ﻻ يوجد ملخص باللغة العربية
We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The pr
In this brief comment we attempt to clarify the apparent discrepancy between the papers [1] and [2] on the quantum brachistochrone, namely whether it is possible to use a judicious mixture of Hermitian and non-Hermitian quantum mechanics to evade the
Entanglement is closely related to some fundamental features of the dynamics of composite quantum systems: quantum entanglement enhances the speed of evolution of certain quantum states, as measured by the time required to reach an orthogonal state.
Recently, the quantum brachistochrone problem is discussed in the literature by using non-Hermitian Hamilton operators of different type. Here, it is demonstrated that the passage time is tunable in realistic open quantum systems due to the biorthogo
The quantum mechanical brachistochrone system with PT-symmetric Hamiltonian is Naimark dilated and reinterpreted as subsystem of a Hermitian system in a higher-dimensional Hilbert space. This opens a way to a direct experimental implementation of the