ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical conductance of the chiral 2d random flux model

160   0   0.0 ( 0 )
 نشر من قبل Ludwig Schweitzer
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The two-terminal conductance of a random flux model defined on a square lattice is investigated numerically at the band center using a transfer matrix method. Due to the chiral symmetry, there exists a critical point where the ensemble averaged mean conductance is scale independent. We also study the conductance distribution function which depends on the boundary conditions and on the number of lattice sites being even or odd. We derive a critical exponent $ u=0.42pm 0.05$ for square samples of even width using one-parameter scaling of the conductance. This result could not be obtained previously from the divergence of the localization length in quasi-one-dimensional systems due to pronounced finite-size effects.

قيم البحث

اقرأ أيضاً

35 - Yi-Kuo Yu 1996
The chiral surface electrons in the bulk quantum Hall effect probably form the first extended system in which conductance fluctuations can be calculated non-perturbatively in the presence of disorder. By use of the Kubo formula with appropriate bound ary conditions, we calculate exactly the variance of conductance with non-perturbative methods. We find that the conductance fluctuations of this system are ``nonuniversal and the variance of the conductance scales in a very peculiar way. This result can be checked with exact computation using the Landauer-Buttiker formula and both methods show the same scaling behavior. We have also calculated the diffusion constant fluctuations exactly. We find that the diffusion constant fluctuations vanish and thus play no role in the conductance fluctuations.
Bilayer graphene in a perpendicular electric field can host domain walls between regions of reversed field direction or interlayer stacking. The gapless modes propagating along these domain walls, while not strictly topological, nevertheless have int eresting physical properties, including valley-momentum locking. A junction where two domain walls intersect forms the analogue of a quantum point contact. We study theoretically the critical behavior of this junction near the pinch-off transition, which is controlled by two separate classes of non-trivial quantum critical points. For strong interactions, the junction can host phases of unique charge and valley conductances. For weaker interactions, the low-temperature charge conductance can undergo one of two possible quantum phase transitions, each characterized by a specific critical exponent and a collapse to a universal scaling function, which we compute.
We report experimental results on a quantum point contact (QPC) device formed in a wide AlAs quantum well where the two-dimensional electrons occupy two in-plane valleys with elliptical Fermi contours. To probe the closely-spaced, one-dimensional ele ctric subbands, we fabricated a point contact device defined by shallow-etching and a top gate that covers the entire device. The conductance versus top gate bias trace shows a series of weak plateaus at integer multiples of $2e^2/h$, indicating a broken valley degeneracy in the QPC and implying the potential use of QPC as a simple valley filter device. A model is presented to describe the quantized energy levels and the role of the in-plane valleys in the transport. We also observe a well-developed conductance plateau near $0.7x2e^2/h$ which may reflect the strong electron-electron interaction in the system.
148 - W.Q. Chen , Z.Y. Weng , 2005
We present first numerical studies of the disorder effect on the recently proposed intrinsic spin Hall conductance in a three dimensional (3D) lattice Luttinger model. The results show that the spin Hall conductance remains finite in a wide range of disorder strength, with large fluctuations. The disorder-configuration-averaged spin Hall conductance monotonically decreases with the increase of disorder strength and vanishes before the Anderson localization takes place. The finite-size effect is also discussed.
We consider a clean two-dimensional interacting electron gas subject to a random perpendicular magnetic field, h({bf r}). The field is nonquantizing, in the sense, that {cal N}_h-a typical flux into the area lambda_{text{tiny F}}^2 in the units of th e flux quantum (lambda_{text{tiny F}} is the de Broglie wavelength) is small, {cal N}_hll 1. If the spacial scale, xi, of change of h({bf r}) is much larger than lambda_{text{tiny F}}, the electrons move along semiclassical trajectories. We demonstrate that a weak field-induced curving of the trajectories affects the interaction-induced electron lifetime in a singular fashion: it gives rise to the correction to the lifetime with a very sharp energy dependence. The correction persists within the interval omega sim omega_0= E_{text{tiny F}}{cal N}_h^{2/3} much smaller than the Fermi energy, E_{text{tiny F}}. It emerges in the third order in the interaction strength; the underlying physics is that a small phase volume sim (omega/E_{text{tiny F}})^{1/2} for scattering processes, involving {em two} electron-hole pairs, is suppressed by curving. Even more surprising effect that we find is that {em disorder-averaged} interaction correction to the density of states, delta u(omega), exhibits {em oscillatory} behavior, periodic in bigl(omega/omega_0bigr)^{3/2}. In our calculations of interaction corrections random field is incorporated via the phases of the Green functions in the coordinate space. We discuss the relevance of the new low-energy scale for realizations of a smooth random field in composite fermions and in disordered phase of spin-fermion model of ferromagnetic quantum criticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا