ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized conductance in an AlAs 2D electron system quantum point contact

99   0   0.0 ( 0 )
 نشر من قبل Oki Gunawan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental results on a quantum point contact (QPC) device formed in a wide AlAs quantum well where the two-dimensional electrons occupy two in-plane valleys with elliptical Fermi contours. To probe the closely-spaced, one-dimensional electric subbands, we fabricated a point contact device defined by shallow-etching and a top gate that covers the entire device. The conductance versus top gate bias trace shows a series of weak plateaus at integer multiples of $2e^2/h$, indicating a broken valley degeneracy in the QPC and implying the potential use of QPC as a simple valley filter device. A model is presented to describe the quantized energy levels and the role of the in-plane valleys in the transport. We also observe a well-developed conductance plateau near $0.7x2e^2/h$ which may reflect the strong electron-electron interaction in the system.

قيم البحث

اقرأ أيضاً

We report a precise experimental study on the shot noise of a quantum point contact (QPC) fabricated in a GaAs/AlGaAs based high-mobility two-dimensional electron gas (2DEG). The combination of unprecedented cleanliness and very high measurement accu racy has enabled us to discuss the Fano factor to characterize the shot noise with a precision of 1 %. We observed that the shot noise at zero magnetic field exhibits a slight enhancement exceeding the single particle theoretical prediction, and that it gradually decreases as a perpendicular magnetic field is applied. We also confirmed that this additional noise completely vanishes in the quantum Hall regime. These phenomena can be explained by the electron heating effect near the QPC, which is suppressed with increasing magnetic field.
We describe how a local non-equilibrium nuclear polarisation can be generated and detected by electrical means in a semiconductor quantum point contact device. We show that measurements of the nuclear spin relaxation rate will provide clear signature s of the interaction mechanism underlying the 0.7 conductance anomaly. Our analysis illustrates how nuclear magnetic resonance methods, which are used extensively to study strongly-correlated electron phases in bulk materials, can be made to play a similarly important role in nanoscale devices.
The lifetime of two dimensional electrons in GaAs quantum wells, placed in weak quantizing magnetic fields, is measured using a simple transport method in broad range of temperatures from 0.3 K to 20 K. The temperature variations of the electron life time are found to be in good agreement with conventional theory of electron-electron scattering in 2D systems.
Due to a strong spin-orbit interaction and a large Lande g-factor, InSb plays an important role in research on Majorana fermions. To further explore novel properties of Majorana fermions, hybrid devices based on quantum wells are conceived as an alte rnative approach to nanowires. In this work, we report a pronounced conductance quantization of quantum point contact devices in InSb/InAlSb quantum wells. Using a rotating magnetic field, we observe a large in-plane (|g1|=26) and out-of-plane (|g1|=52) g-factor anisotropy. Additionally, we investigate crossings of subbands with opposite spins and extract the electron effective mass from magnetic depopulation of one-dimensional subbands.
The effect of an insulating barrier located at a distance $a$ from a NS quantum point contact is analyzed in this work. The Bogoliubov de Gennes equations are solved for NINS junctions (S: anysotropic superconductor, I: insulator and N: normal metal) , where the NIN region is a quantum wire. For $% a eq0$, bound states and resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair potential, the strength of the insulating barrier and $a $. Our results show that in a NINS quantum point contact the number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results for the NINS junction, in which only the position of the resonances changes with the symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا