ﻻ يوجد ملخص باللغة العربية
We consider a clean two-dimensional interacting electron gas subject to a random perpendicular magnetic field, h({bf r}). The field is nonquantizing, in the sense, that {cal N}_h-a typical flux into the area lambda_{text{tiny F}}^2 in the units of the flux quantum (lambda_{text{tiny F}} is the de Broglie wavelength) is small, {cal N}_hll 1. If the spacial scale, xi, of change of h({bf r}) is much larger than lambda_{text{tiny F}}, the electrons move along semiclassical trajectories. We demonstrate that a weak field-induced curving of the trajectories affects the interaction-induced electron lifetime in a singular fashion: it gives rise to the correction to the lifetime with a very sharp energy dependence. The correction persists within the interval omega sim omega_0= E_{text{tiny F}}{cal N}_h^{2/3} much smaller than the Fermi energy, E_{text{tiny F}}. It emerges in the third order in the interaction strength; the underlying physics is that a small phase volume sim (omega/E_{text{tiny F}})^{1/2} for scattering processes, involving {em two} electron-hole pairs, is suppressed by curving. Even more surprising effect that we find is that {em disorder-averaged} interaction correction to the density of states, delta u(omega), exhibits {em oscillatory} behavior, periodic in bigl(omega/omega_0bigr)^{3/2}. In our calculations of interaction corrections random field is incorporated via the phases of the Green functions in the coordinate space. We discuss the relevance of the new low-energy scale for realizations of a smooth random field in composite fermions and in disordered phase of spin-fermion model of ferromagnetic quantum criticality.
Thermodynamic and transport characteristics of a clean two-dimensional interacting electron gas are shown to be sensitive to the weak perpendicular magnetic field even at temperatures much higher than the cyclotron energy, when the quantum oscillatio
Effects associated with the interference of electron waves around a magnetic point defect in two-dimensional electron gas with combined Rashba-Dresselhaus spin-orbit interaction in the presence of a parallel magnetic field are theoretically investiga
The lifetime of two dimensional electrons in GaAs quantum wells, placed in weak quantizing magnetic fields, is measured using a simple transport method in broad range of temperatures from 0.3 K to 20 K. The temperature variations of the electron life
Tunnelling between two-dimensional electron systems has been studied in the magnetic field perpendicular to the systems planes. The satellite conductance peaks of the main resonance have been observed due to the electron tunnelling assisted by the el
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the inte