ﻻ يوجد ملخص باللغة العربية
The use of standard rulers, such as the scale of the Baryonic Acoustic oscillations (BAO), has become one of the more powerful techniques employed in cosmology to probe the entity driving the accelerating expansion of the Universe. In this paper, the topology of large scale structure (LSS) is used as one such standard ruler to study this mysterious `dark energy. By following the redshift evolution of the clustering of luminous red galaxies (LRGs) as measured by their 3D topology (counting structures in the cosmic web), we can chart the expansion rate and extract information about the equation of state of dark energy. Using the technique first introduced in (Park & Kim, 2009), we evaluate the constraints that can be achieved using 3D topology measurements from next-generation LSS surveys such as the Baryonic Oscillation Spectroscopic Survey (BOSS). In conjunction with the information that will be available from the Planck satellite, we find a single topology measurement on 3 different scales is capable of constraining a single dark energy parameter to within 5% and 10% when dynamics are permitted. This offers an alternative use of the data available from redshift surveys and serves as a cross-check for BAO studies.
An axion-like field comprising $sim 10%$ of the energy density of the universe near matter-radiation equality is a candidate to resolve the Hubble tension; this is the early dark energy (EDE) model. However, as shown in Hill et al. (2020), the model
We place the most robust constraint to date on the scale of the turnover in the cosmological matter power spectrum using data from the WiggleZ Dark Energy Survey. We find this feature to lie at a scale of $k_0=0.0160^{+0.0041}_{-0.0035}$ [h/Mpc] (68%
We study infrared effects in perturbation theory for large-scale structure coupled to the effective field theory of dark energy, focusing on, in particular, Degenerate Higher-Order Scalar-Tensor (DHOST) theories. In the subhorizon, Newtonian limit, D
Recently, about five hundred fast radio bursts (FRBs) detected by CHIME/FRB Project have been reported. The vast amounts of data would make FRBs a promising low-redshift cosmological probe in the forthcoming years, and thus the issue of how many FRBs
We study the imprints of an effective dark energy fluid in the large scale structure of the universe through the observed angular power spectrum of galaxies in the relativistic regime. We adopt the phenomenological approach that introduces two parame