ترغب بنشر مسار تعليمي؟ اضغط هنا

Current velocity data on dwarf galaxy NGC1052-DF2 do not constrain it to lack dark matter

82   0   0.0 ( 0 )
 نشر من قبل Nicolas Martin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It was recently proposed that the globular cluster system of the very low surface-brightness galaxy NGC1052-DF2 is dynamically very cold, leading to the conclusion that this dwarf galaxy has little or no dark matter. Here, we show that a robust statistical measure of the velocity dispersion of the tracer globular clusters implies a mundane velocity dispersion and a poorly constrained mass-to-light ratio. Models that include the possibility that some of the tracers are field contaminants do not yield a more constraining inference. We derive only a weak constraint on the mass-to-light ratio of the system within the half-light radius (M/L_V<6.7 at the 90% confidence level) or within the radius of the furthest tracer (M/L_V<8.1 at the 90% confidence level). This limit may imply a mass-to-light ratio on the low end for a dwarf galaxy but many Local Group dwarf galaxies fall well within this contraint. With this study, we emphasize the need to reliably account for measurement uncertainties and to stay as close as possible to the data when determining dynamical masses from very small data sets of tracers.



قيم البحث

اقرأ أيضاً

132 - Pavel Kroupa 2019
A great challenge in present-day physics is to understand whether the observed internal dynamics of galaxies is due to dark matter matter or due to a modification of the law of gravity. Recently, van Dokkum et al. reported that the ultra-diffuse dwar f galaxy NGC1052-DF2 lacks dark matter, and they claimed that this would -- paradoxically -- be problematic for modified gravity theories like Milgromian dynamics (MOND). However, NGC1052-DF2 is not isolated, so that a valid prediction of its internal dynamics in MOND cannot be made without properly accounting for the external gravitational fields from neighbouring galaxies. Including this external field effect following Haghi et al. shows that NGC1052-DF2 is consistent with MOND.
We recently published velocity measurements of luminous globular clusters in the galaxy NGC1052-DF2, concluding that it lies far off the canonical stellar mass - halo mass relation. Here we present a revised velocity for one of the globular clusters, GC-98, and a revised velocity dispersion measurement for the galaxy. We find that the intrinsic dispersion $sigma=5.6^{+5.2}_{-3.8}$ km/s using Approximate Bayesian Computation, or $sigma=7.8^{+5.2}_{-2.2}$ km/s using the likelihood. The expected dispersion from the stars alone is ~7 km/s. Responding to a request from the Editors of ApJ Letters and RNAAS, we also briefly comment on the recent analysis of our measurements by Martin et al. (2018).
Observations of ultra-diffuse galaxies NGC 1052-DF2 and -DF4 show they may contain little dark matter, challenging our understanding of galaxy formation. Using controlled N-body simulations, we explore the possibility that their properties can be rep roduced through tidal stripping from the elliptical galaxy NGC 1052, in both cold dark matter (CDM) and self-interacting dark matter (SIDM) scenarios. To explain the dark matter deficiency, we find that a CDM halo must have a very low concentration so that it can lose sufficient inner mass in the tidal field. In contrast, SIDM favors a higher and more reasonable concentration as core formation enhances tidal mass loss. Final stellar distributions in our SIDM benchmarks are more diffuse than the CDM one, and hence the former are in better agreement with the data. We further show that a cored CDM halo model modified by strong baryonic feedback is unlikely to reproduce the observations. Our results indicate that SIDM is more favorable for the formation of dark-matter-deficient galaxies.
NGC1052-DF2 and NGC1052-DF4 are ultra-diffuse galaxies (UDGs) that were found to have extremely low velocity dispersions, indicating that they have little or no dark matter. Both galaxies host anomalously luminous globular cluster (GC) systems, with a peak magnitude of their GC luminosity function (GCLF) that is $sim1.5$ magnitudes brighter than the near-universal value of $M_V approx -7.5$. Here we present an analysis of the joint GCLF of the two galaxies, making use of new HST photometry and Keck spectroscopy, and a recently improved distance measurement. We apply a homogeneous photometric selection method to the combined GC sample of DF2 and DF4. The new analysis shows that the peak of the combined GC luminosity function remains at $M_V approx -9$ mag. In addition, we find a subpopulation of less luminous GCs at $M_V approx -7.5$ mag, where the near-universal GCLF peak is located. The number of GCs in the magnitude range of $-5$ to $-8$ is $7.1_{-4.34}^{+7.33}$ in DF2 and $8.6_{-4.83}^{+7.74}$ in DF4, similar to that expected from other galaxies of the same luminosity. The total GC number between $M_V$ of $-5$ to $-11$ is $18.5_{-4.42}^{+8.99}$ for DF2 and $18.6_{-4.92}^{+9.37}$ for DF4, calculated from the background-subtracted GCLF. The updated total number of GCs in both galaxies is $37^{+11.08}_{-6.54}$. The number of GCs do not scale with the halo mass in either DF2 or DF4, suggesting that $N_{GC}$ is not directly determined by the merging of halos.
The large and diffuse galaxies NGC1052-DF2 and NGC1052-DF4 have been found to have very low dark matter content and a population of luminous globular clusters. Accurate distance measurements are key to interpreting these observations. Recently, the d istance to NGC1052-DF4 was found to be $20.0pm 1.6$ Mpc by identifying the tip of the red giant branch (TRGB) in 12 orbits of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. Here we present 40 orbits of HST ACS data for NGC1052-DF2 and use these data to measure its TRGB. The TRGB is readily apparent in the color-magnitude diagram. Using a forward model that incorporates photometric uncertainties, we find a TRGB magnitude of $m_{rm F814W, TRGB} = 27.67 pm 0.10$ mag. The inferred distance is $D_{rm TRGB} = 22.1 pm 1.2$ Mpc, consistent with the previous surface brightness fluctuation distances to the bright elliptical galaxy NGC1052. The new HST distance rules out the idea that some of NGC1052-DF2s unusual properties can be explained if it were at $sim 13$ Mpc; instead, it implies that the galaxys globular clusters are even more luminous than had been derived using the previous distance of 20 Mpc. The distance from NGC1052-DF2 to NGC1052-DF4 is well-determined at $2.1pm 0.5$ Mpc, significantly larger than the virial diameter of NGC1052. We discuss the implications for formation scenarios of the galaxies and for the external field effect, which has been invoked to explain the intrinsic dynamics of these objects in the context of modified Newtonian dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا