ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation

232   0   0.0 ( 0 )
 نشر من قبل Martin Sirena
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the annealing effect in transport properties of High temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low temperature annealing (80 degrees Celsius) increases the JJ transition temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn the normal resistance. We found that the spread in JJ characteristics can be lowered by sufficient long annealing times. Using random walk numerical simulations, we showed that the characteristic annealing time and the evolution of the spread in JJ characteristics can be explained by a vacancy-interstitial annihilation process rather than by an oxygen diffusion one.

قيم البحث

اقرأ أيضاً

We report the electrical transport in vertical Josephson tunnel junctions (area 400 $mu m$$^2$) using GdBa$_2$Cu$_3$O$_7$$_{-delta}$ electrodes and SrTiO$_3$ as an insulating barrier (with thicknesses between 1 nm and 4 nm). The results show Josephso n coupling for junctions with SrTiO$_3$ barriers of 1 nm and 2 nm. The latter displays a Josephson of 8.9 mV at 12 K. This value is larger than the usually observed in planar arrays of junctions. Our results are promising for the development of superconducting electronic devices in the terahertz regime.
We study magnetization reversal in a $varphi_0$ Josephson junction with direct coupling between magnetic moment and Josephson current. Our simulations of magnetic moment dynamics show that by applying an electric current pulse, we can realize the ful l magnetization reversal. We propose different protocols of full magnetization reversal based on the variation of the Josephson junction and pulse parameters, particularly, electric current pulse amplitude, damping of magnetization and spin-orbit interaction. We discuss experiments which can probe the magnetization reversal in $varphi_0$-junctions.
Superconductor-Ferromagnet-Superconductor (S-F-S) Josephson junctions were fabricated by making a narrow cut through a S-F double layer using direct writing by Focused Ion Beam (FIB). Due to a high resolution (spot size smaller than 10 nm) of FIB, ju nctions with a small separation between superconducting electrodes ($leq$ 30 nm) can be made. Such a short distance is sufficient for achieving a considerable proximity coupling through a diluted CuNi ferromagnet. We have successfully fabricated and studied S-F-S (Nb-CuNi-Nb) and S-S-S (Nb-Nb/CuNi-Nb) junctions. Junctions exhibit clear Fraunhofer modulation of the critical current as a function of magnetic field, indicating good uniformity of the cut. By changing the depth of the cut, junctions with the $I_c R_n$ product ranging from 0.5 mV to $sim 1mu $V were fabricated.
We study the spectrum of Andreev bound states and Josephson currents across a junction of $N$ superconducting wires which may have $s$- or $p$-wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transpor t across such junctions. For $N ge 3$, it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three $s$- or three $p$-wave superconductors, we provide analytic expressions for the Andreev bound state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of $4e^2/h$, where $e$ is the electron charge and $h = 2pi hbar$ is Plancks constant. For a sinusoidal current with frequency $omega$ applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage $langle V_1 rangle$ across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of $2e langle V_1 rangle/(hbar omega)$. We also use our formalism to study junctions of two $p$- and one $s$-wave wires. We find that the corresponding Andreev bound state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external applied voltage across the junction. We discuss experiments which may test our theory.
Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm al region: We show how the interplay between the spin-momentum locking of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail. In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be observed in experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا