ﻻ يوجد ملخص باللغة العربية
Lattice dynamics and molecular dynamics studies of the oxides UO2 and Li2O in their normal as well as superionic phase are reported. Lattice dynamics calculations have been carried out using a shell model in the quasiharmonic approximation. The calculated elastic constants, phonon frequencies and specific heat are in good agreement with reported experimental data, which help validate the interatomic potentials required for undertaking molecular dynamics simulations. The calculated free energies reveal high pressure fluorite to cottunite phase transitions at 70 GPa for UO2 and anti-fluorite to anti-cotunnite phase transformation at 25 GPa for Li2O, in agreement with reported experiments. Molecular dynamics studies shed important insights into the mechanisms of diffusion and superionic behavior at high temperatures. The calculated superionic transition temperature of Li2O is 1000 K, while that of UO2 is 2300 K.
This paper reports an investigation on the phase diagram and compressibility of wolframite-type tungstates by means of x-ray powder diffraction and absorption in a diamond-anvil cell and ab initio calculations. The diffraction experiments show that m
We recently proposed a high-pressure and high-temperature P-62m-symmetry polymorph for CaF2 on the basis of ab-initio random structure searching and density-functional theory calculations [Phys. Rev. B 95, 054118 (2017)]. We revisit this polymorph us
Solid-state materials with high ionic conduction are necessary to many technologies including all-solid-state Li-ion batteries. Understanding how crystal structure dictates ionic diffusion is at the root of the development of fast ionic conductors. H
The high breakdown current densities and resilience to scaling of the metallic transition metal trichalcogenides TaSe3 and ZrTe3 make them of interest for possible interconnect applications, and it motivates this study of their thermal conductivities
A composite conductive material, which consists of fibers of a high conductivity in a matrix of low conductivity, is discussed. The effective conductivity of the system considered is calculated in Clausius-Mossotti approximation. Obtained relationshi