ﻻ يوجد ملخص باللغة العربية
Solid-state materials with high ionic conduction are necessary to many technologies including all-solid-state Li-ion batteries. Understanding how crystal structure dictates ionic diffusion is at the root of the development of fast ionic conductors. Here, we show that LiTi2(PS4)3 exhibits a Li-ion diffusion coefficient about an order of magnitude higher than current state-of-the-art lithium superionic conductors. We rationalize this observation by the unusual crystal structure of LiTi2(PS4)3 which offers no regular tetrahedral or octahedral sites for lithium to favorably occupy. This creates a smooth, frustrated energy landscape resembling more the energy landscapes present in liquids than in typical solids. This frustrated energy landscape leads to a high diffusion coefficient combining low activation energy with a high pre-factor.
Lattice dynamics and molecular dynamics studies of the oxides UO2 and Li2O in their normal as well as superionic phase are reported. Lattice dynamics calculations have been carried out using a shell model in the quasiharmonic approximation. The calcu
Water is abundant in natural environments but the form it resides in planetary interiors remains uncertain. We report combined synchrotron X-ray diffraction and optical spectroscopy measurements of H2O in the laser-heated diamond anvil cell up to 150
The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the asso
Using direct atomic simulations, the vibration scattering time scales are characterized, and then the nature and the quantitative weight of thermal excitations are investigated in an example system Li2S from its amorphous solid state to its partial-s
Superionic hydrogen was previously thought to be an exotic state predicted and confirmed only in pure H2O ice. In Earths deep interior, H2O exists in the form of O-H groups in ultra-dense hydrous minerals, which have been proved to be stable even at