ﻻ يوجد ملخص باللغة العربية
We recently proposed a high-pressure and high-temperature P-62m-symmetry polymorph for CaF2 on the basis of ab-initio random structure searching and density-functional theory calculations [Phys. Rev. B 95, 054118 (2017)]. We revisit this polymorph using both ab-initio and classical molecular dynamics simulations. The structure undergoes a phase transition to a superionic phase in which calcium ions lie on a bcc-symmetry lattice (space group Im-3m), a phase not previously discussed for the group-II difluorides. We demonstrate that modelling this phase transition is surprisingly difficult, and requires very large simulation cells (at least 864 atoms) in order to observe correct qualitative and quantitative behaviour. The prediction of superionic behaviour in P-62m-CaF2 was originally made through the observation of a lattice instability at the harmonic level in DFT calculations. Using superionic alpha-CaF2, CeO2, beta-PbF2 and Li2O as examples, we examine the potential of using phonons as a means to search for superionic materials, and propose that this offers an affordable way to do so.
The phase diagram of Zn has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab-initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed crystal
By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl$_2$-type structure. We compute the thermal conductivity tensor by solving the
Silica, water and hydrogen are known to be the major components of celestial bodies, and have significant influence on the formation and evolution of giant planets, such as Uranus and Neptune. Thus, it is of fundamental importance to investigate thei
Lanthanum (La), the first member of the rare-earth elements, recently aroused strong interest due to its unique superhydride with superconducting properties. Although there is much theoretical and experimental work about phase transitions and superco
We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the p