ترغب بنشر مسار تعليمي؟ اضغط هنا

Knotted Polyhedral Tori

123   0   0.0 ( 0 )
 نشر من قبل Frank H. Lutz
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For every knot K with stick number k there is a knotted polyhedral torus of knot type K with 3k vertices. We prove that at least 3k-2 vertices are necessary.



قيم البحث

اقرأ أيضاً

Polyhedral circle packings are generalizations of the Apollonian packing. We develop the theory of the Apollonian group, Descartes quadratic form, and related objects for all polyhedral packings. We use these tools to determine the domain of absolute convergence of a generating function that can be associated to any polyhedral packing. This domain of convergence is the Tits cone for an infinite root system.
93 - Stephan Stadler 2013
We give new examples of closed smooth 4-manifolds which support singular metrics of nonpositive curvature, but no smooth ones, thereby answering affirmatively a question of Gromov. The obstruction comes from patterns of incompressible 2-tori sufficie ntly complicated to force branching of geodesics for nonpositively curved metrics.
255 - Oleg Musin , Alexey Tarasov 2010
The thirteen spheres problem is asking if 13 equal size nonoverlapping spheres in three dimensions can touch another sphere of the same size. This problem was the subject of the famous discussion between Isaac Newton and David Gregory in 1694. The pr oblem was solved by Schutte and van der Waerden only in 1953. A natural extension of this problem is the strong thirteen spheres problem (or the Tammes problem for 13 points) which asks to find an arrangement and the maximum radius of 13 equal size nonoverlapping spheres touching the unit sphere. In the paper we give a solution of this long-standing open problem in geometry. Our computer-assisted proof is based on a enumeration of the so-called irreducible graphs.
We describe a method for computing the highest degree coefficients of a weighted Ehrhart quasi-polynomial for a rational simple polytope.
287 - Gunter M. Ziegler 2007
It is an amazing and a bit counter-intuitive discovery by Micha Perles from the sixties that there are ``non-rational polytopes: combinatorial types of convex polytopes that cannot be realized with rational vertex coordinates. We describe a simple construction of non-rational polytopes that does not need duality (Perles ``Gale diagrams): It starts from a non-rational point configuration in the plane, and proceeds with so-called Lawrence extensions. We also show that there are non-rational polyhedral surfaces in 3-space, a discovery by Ulrich Brehm from 1997. His construction also starts from any non-rational point configuration in the plane, and then performs what one should call Brehm extensions, in order to obtain non-rational partial surfaces. These examples and objects are first mile stones on the way to the remarkable universality theorems for polytopes and for polyhedral surfaces by Mnev (1986), Richter-Gebert (1994), and Brehm (1997).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا