ﻻ يوجد ملخص باللغة العربية
We measure the evolution of galaxy clustering out to a redshift of z~1.5 using data from two MUSYC fields, the Extended Hubble Deep Field South (EHDF-S) and the Extended Chandra Deep Field South (ECDF-S). We use photometric redshift information to calculate the projected-angular correlation function, omega(sigma), from which we infer the projected correlation function Xi(sigma). We demonstrate that this technique delivers accurate measurements of clustering even when large redshift measurement errors affect the data. To this aim we use two mock MUSYC fields extracted from a LambdaCDM simulation populated with GALFORM semi-analytic galaxies which allow us to assess the degree of accuracy of our estimates of Xi(sigma) and to identify and correct for systematic effects in our measurements. We study the evolution of clustering for volume limited subsamples of galaxies selected using their photometric redshifts and rest-frame r-band absolute magnitudes. We find that the real-space correlation length r_0 of bright galaxies, M_r<-21 (rest-frame) can be accurately recovered out to z~1.5, particularly for ECDF-S given its near-infrared photometric coverage. There is mild evidence for a luminosity dependent clustering in both fields at the low redshift samples (up to <z>=0.57), where the correlation length is higher for brighter galaxies by up to 1Mpc/h between median rest-frame r-band absolute magnitudes of -18 to -21.5. As a result of the photometric redshift measurement, each galaxy is assigned a best-fit template; we restrict to E and E+20%Sbc types to construct subsamples of early type galaxies (ETGs). Our ETG samples show a strong increase in r_0 as the redshift increases, making it unlikely (95% level) that ETGs at median redshift z_med=1.15 are the direct progenitors of ETGs at z_med=0.37 with equivalent passively evolved luminosities. (ABRIDGED)
We present measurements of the spatial clustering of galaxies with stellar masses >10^11Msun, infrared luminosities >10^12 Lsun, and star formation rates >200Msun per year in two redshift intervals; 1.5<z<2.0 and 2<z<3. Both samples cluster very stro
We observed star-forming galaxies at z~1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [OII] emitters identified via narrow-band imaging and photometric redshifts from grizy ph
We report Herschel SPIRE (250, 350, and 500 micron) detections of 32 quasars with redshifts 0.5 < z < 3.6 from the Herschel Multi-tiered Extragalactic Survey. These sources are from a MIPS 24 micron flux-limited sample of 326 quasars in the Lockman H
Calculating the galaxy merger rate requires both a census of galaxies identified as merger candidates, and a cosmologically-averaged `observability timescale T_obs(z) for identifying galaxy mergers. While many have counted galaxy mergers using a vari
In this work, we present results for the photometric and clustering properties of galaxies that arise in a LambdaCDM hydrodynamical simulation of the local universe. The present-day distribution of matter was constructed to match the observed large s