ﻻ يوجد ملخص باللغة العربية
Around 4% of O-stars are observed in apparent isolation, with no associated cluster, and no indication of having been ejected from a nearby cluster. We define an isolated O-star as a star > 17.5 M_odot in a cluster with total mass <100 M_odot which contains no other massive (>10 M_odot) stars. We show that the fraction of apparently isolated O-stars is reproduced when stars are sampled (randomly) from a standard initial mass function and a standard cluster mass function of the form N(M) propto M^-2. This result is difficult to reconcile with the idea that there is a fundamental relationship between the mass of a cluster and the mass of the most massive star in that cluster. We suggest that such a relationship is a typical result of star formation in clusters, and that `isolated O-stars are low-mass clusters in which massive stars have been able to form.
The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star-formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seem
Great strides have been made in the last two decades in determining how galaxies evolve from their initial dark matter seeds to the complex structures we observe at z=0. The role of mergers has been documented through both observations and simulation
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger
A leading formation scenario for R Coronae Borealis (RCB) stars invokes the merger of degenerate He and CO white dwarfs (WD) in a binary. The observed ratio of 16O/18O for RCB stars is in the range of 0.3-20 much smaller than the solar value of ~500.
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cau