ﻻ يوجد ملخص باللغة العربية
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cause binary clusters to form. This process is highly stochastic and it is not obvious from a regions initial conditions whether a binary will form and, if it does, which stars will end up in which cluster. We find the probability that a region will divide is mainly determined by its virial ratio, and a virial ratio above equilibrium is generally necessary for binary formation. We also find that the mass ratio of the two clusters is strongly influenced by the initial degree of spatial substructure in the region.
The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star-formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seem
Great strides have been made in the last two decades in determining how galaxies evolve from their initial dark matter seeds to the complex structures we observe at z=0. The role of mergers has been documented through both observations and simulation
ALMA observations of the Serpens South star-forming region suggest that stellar protoclusters may be completely mass segregated at birth. Independent observations also suggest that embedded clusters form segregated by mass. As the primordial mass seg
Globular clusters (GCs) in the Milky Way exhibit a well-observed bimodal distribution in core radii separating the so-called core-collapsed and non-core-collapsed clusters. Here, we use our Henon-type Monte Carlo code, CMC, to explore initial cluster
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger