ترغب بنشر مسار تعليمي؟ اضغط هنا

How do Galaxies Accrete Gas and Form Stars?

78   0   0.0 ( 0 )
 نشر من قبل Mary E. Putman
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M.E. Putman




اسأل ChatGPT حول البحث

Great strides have been made in the last two decades in determining how galaxies evolve from their initial dark matter seeds to the complex structures we observe at z=0. The role of mergers has been documented through both observations and simulations, numerous satellites that may represent these initial dark matter seeds have been discovered in the Local Group, high redshift galaxies have been revealed with monstrous star formation rates, and the gaseous cosmic web has been mapped through absorption line experiments. Despite these efforts, the dark matter simulations that include baryons are still unable to accurately reproduce galaxies. One of the major problems is our incomplete understanding of how a galaxy accretes its baryons and subsequently forms stars. Galaxy formation simulations have been unable to accurately represent the required gas physics on cosmological timescales, and observations have only just begun to detect the star formation fuel over a range of redshifts and environments. How galaxies obtain gas and subsequently form stars is a major unsolved, yet tractable problem in contemporary extragalactic astrophysics. In this paper we outline how progress can be made in this area in the next decade.

قيم البحث

اقرأ أيضاً

73 - Gary A Mamon 2010
We apply a simple, one-equation, galaxy formation model on top of the halos and subhalos of a high-resolution dark matter cosmological simulation to study how dwarf galaxies acquire their mass and, for better mass resolution, on over 10^5 halo merger trees, to predict when they form their stars. With the first approach, we show that the large majority of galaxies within group- and cluster-mass halos have acquired the bulk of their stellar mass through gas accretion and not via galaxy mergers. We deduce that most dwarf ellipticals are not built up by galaxy mergers. With the second approach, we constrain the star formation histories of dwarfs by requiring that star formation must occur within halos of a minimum circular velocity set by the evolution of the temperature of the IGM, starting before the epoch of reionization. We qualitatively reproduce the downsizing trend of greater ages at greater masses and predict an upsizing trend of greater ages as one proceeds to masses lower than m_crit. We find that the fraction of galaxies with very young stellar populations (more than half the mass formed within the last 1.5 Gyr) is a function of present-day mass in stars and cold gas, which peaks at 0.5% at m_crit=10^6-8 M_Sun, corresponding to blue compact dwarfs such as I Zw 18. We predict that the baryonic mass function of galaxies should not show a maximum at masses above 10^5.5, M_Sun, and we speculate on the nature of the lowest mass galaxies.
113 - Becky Arnold 2017
Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cau se binary clusters to form. This process is highly stochastic and it is not obvious from a regions initial conditions whether a binary will form and, if it does, which stars will end up in which cluster. We find the probability that a region will divide is mainly determined by its virial ratio, and a virial ratio above equilibrium is generally necessary for binary formation. We also find that the mass ratio of the two clusters is strongly influenced by the initial degree of spatial substructure in the region.
62 - Matthew J. Darnley 2019
All novae recur, but only a handful have been observed in eruption more than once. These systems, the recurrent novae (RNe), are among the most extreme examples of novae. RNe have long been thought of as potential type Ia supernova progenitors, and t heir claim to this accolade has recently been strengthened. In this short review RNe will be presented within the framework of the maximum magnitude-rate of decline (MMRD) phase-space. Recent work integrating He-flashes into nova models, and the subsequent growth of the white dwarf, will be explored. This review also presents an overview of the Galactic and extragalactic populations of RNe, including the newly identified rapid recurrent nova subset - those with recurrence periods of ten years, or less. The most exciting nova system yet discovered - M31N 2008-12a, with its annual eruptions and vast nova super-remnant, is introduced. Throughout, open questions regarding RNe, and some of the expected challenges and opportunities that the near future will bring are addressed.
We present ultraviolet through far-infrared surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes GALEX UV data, optical images from KPNO, CTIO and SD SS, near-IR data from 2MASS, and mid- and far-infrared images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several non-parametric indicators of galaxy morphology: the concentration index (C_42), the asymmetry (A), the Gini coefficient (G) and the normalized second-order moment of the brightest 20% of the galaxys flux (M_20). Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C_42-A-G-M_20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of Polycyclic Aromatic Hydrocarbons at 8.0 microns and very hot dust at 24 microns).
The chemically peculiar barium stars, CH stars, and most CEMP stars are all believed to be the products of mass transfer in binary systems from a now extinct AGB primary star. The mass of the AGB star and the orbital parameters of the system are the key factors usually considered when determining how much mass is transferred onto the lower-mass main-sequence companion. What is usually neglected, however, is the angular momentum of the accreted material, which should spin up the accreting star. If the star reaches critical rotation, further accretion should cease until the excess angular momentum is somehow dealt with. If the star cannot redistribute or lose the angular momentum while the primary is on the AGB, the amount of mass accreted could be much lower than otherwise expected. Here we present calculations, based on detailed stellar evolution models, of the mass that can be accreted by putative progenitors of Ba and CEMP stars before they reach critical rotation under the assumption that no angular momentum loss occurs during the mass transfer. We consider different accretion rates and values of specific angular momentum. The most stringent limits on the accreted masses result from considering accretion from a Keplerian accretion disk, which is likely present during the formation of most extrinsically-polluted carbon-enriched stars. Our calculations indicate that in this scenario only about 0.05 solar masses of material can be added to the accreting star before it reaches critical rotation, which is much too low to explain the chemical enrichment of many Ba and CEMP stars. Either the specific angular momentum of the accreted material has to effectively be lower by about a factor of ten than the Keplerian value, or significant angular momentum losses must occur for substantial accretion to take place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا