ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam-Energy and System-Size Dependence of Dynamical Net Charge Fluctuations

141   0   0.0 ( 0 )
 نشر من قبل Claude A. Pruneau
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present measurements of net charge fluctuations in $Au + Au$ collisions at $sqrt{s_{NN}} = $ 19.6, 62.4, 130, and 200 GeV, $Cu + Cu$ collisions at $sqrt{s_{NN}} = $ 62.4, 200 GeV, and $p + p$ collisions at $sqrt{s} = $ 200 GeV using the dynamical net charge fluctuations measure $ u_{+-{rm,dyn}}$. We observe that the dynamical fluctuations are non-zero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate $1/N_{ch}$ scaling, but display approximate $1/N_{part}$ scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.

قيم البحث

اقرأ أيضاً

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critic al point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.
256 - B. Alver , et al 2006
This paper presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
214 - J.H. Chen 2008
We present a system size and energy dependence of $phi$ meson production in Cu+Cu and Au+Au collisions at $sqrt{s_{NN}}$=62.4 GeV and 200 GeV measured by the STAR experiment at RHIC. We find that the number of participant scaled $phi$ meson yields in heavy ion collisions over that of p+p collisions are larger than 1 and increase with collision energy. We compare the results with those of open-strange particles and discuss the physics implication.
Two-particle azimuthal ($Deltaphi$) and pseudorapidity ($Deltaeta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV and 200~GeV from the STAR expe riment at RHIC are presented. The s correlation is separated into a jet-like component, narrow in both $Deltaphi$ and $Deltaeta$, and the ridge, narrow in $Deltaphi$ but broad in $Deltaeta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV, but is found to be substantially smaller at $sqrt{s_{{NN}}}$ =xspace 62.4 GeV than at $sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ langle N_{mathrm{part}}rangle$). Measurements of the ridge are compared to models.
We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton and net-kaon multiplicity distributions for the first phase of the beam energy scan program at RHIC. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at sNN~= 7.7-200 GeV. Within the available acceptance of $|eta|<0.5$, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at sNN~= 200 GeV and change to positive at the lowest collision energy. Model calculations based on non-thermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the QCD phase diagram, constrain hadron resonance gas model calculations and provide new insights on the energy dependence of baryon-strangeness correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا