ترغب بنشر مسار تعليمي؟ اضغط هنا

No phase transition for Gaussian fields with bounded spins

356   0   0.0 ( 0 )
 نشر من قبل Pablo A. Ferrari
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let a<b, Omega=[a,b]^{Z^d} and H be the (formal) Hamiltonian defined on Omega by H(eta) = frac12 sum_{x,yinZ^d} J(x-y) (eta(x)-eta(y))^2 where J:Z^dtoR is any summable non-negative symmetric function (J(x)ge 0 for all xinZ^d, sum_x J(x)<infty and J(x)=J(-x)). We prove that there is a unique Gibbs measure on Omega associated to H. The result is a consequence of the fact that the corresponding Gibbs sampler is attractive and has a unique invariant measure.



قيم البحث

اقرأ أيضاً

We study the behaviour of the point process of critical points of isotropic stationary Gaussian fields. We compute the main term in the asymptotic expansion of the two-point correlation function near the diagonal. Our main result implies that for a g eneric field the critical points neither repel nor attract each other. Our analysis also allows to study how the short-range behaviour of critical points depends on their index.
We study the competition interface between two growing clusters in a growth model associated to last-passage percolation. When the initial unoccupied set is approximately a cone, we show that this interface has an asymptotic direction with probabilit y 1. The behavior of this direction depends on the angle $theta$ of the cone: for $thetageq180^{circ}$, the direction is deterministic, while for $theta<180^{circ}$, it is random, and its distribution can be given explicitly in certain cases. We also obtain partial results on the fluctuations of the interface around its asymptotic direction. The evolution of the competition interface in the growth model can be mapped onto the path of a second-class particle in the totally asymmetric simple exclusion process; from the existence of the limiting direction for the interface, we obtain a new and rather natural proof of the strong law of large numbers (with perhaps a random limit) for the position of the second-class particle at large times.
130 - Thierry Levy 2015
We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary gro up U(N) when N tends to infinity. We explain how it can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian bridge, and how it can be technically approached by means of Fourier analysis on the unitary group. Moreover, we advertise some more or less classical methods for solving certain minimisation problems which play a fundamental role in the study of the phase transition.
139 - Leonardo T. Rolla 2008
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto pping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the models parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.
We study ferromagnetic Ising models on finite graphs with an inhomogeneous external field, where a subset of vertices is designated as the boundary. We show that the influence of boundary conditions on any given spin is maximised when the external fi eld is identically $0$. One corollary is that spin-spin correlations are maximised when the external field vanishes and the boundary condition is free, which proves a conjecture of Shlosman. In particular, the random field Ising model on ${mathbb Z}^d$, $dgeq 3$, exhibits exponential decay of correlations in the entire high temperature regime of the pure Ising model. Another corollary is that the pure Ising model in $dgeq 3$ satisfies the conjectured strong spatial mixing property in the entire high temperature regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا