ﻻ يوجد ملخص باللغة العربية
We give a rigorous proof of the fact that a phase transition discovered by Douglas and Kazakov in 1993 in the context of two-dimensional gauge theories occurs. This phase transition can be formulated in terms of the Brownian bridge on the unitary group U(N) when N tends to infinity. We explain how it can be understood by considering the asymptotic behaviour of the eigenvalues of the unitary Brownian bridge, and how it can be technically approached by means of Fourier analysis on the unitary group. Moreover, we advertise some more or less classical methods for solving certain minimisation problems which play a fundamental role in the study of the phase transition.
We study the competition interface between two growing clusters in a growth model associated to last-passage percolation. When the initial unoccupied set is approximately a cone, we show that this interface has an asymptotic direction with probabilit
Let a<b, Omega=[a,b]^{Z^d} and H be the (formal) Hamiltonian defined on Omega by H(eta) = frac12 sum_{x,yinZ^d} J(x-y) (eta(x)-eta(y))^2 where J:Z^dtoR is any summable non-negative symmetric function (J(x)ge 0 for all xinZ^d, sum_x J(x)<infty and J
* ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then sto
We consider the Activated Random Walk model on $mathbb{Z}$. In this model, each particle performs a continuous-time simple symmetric random walk, and falls asleep at rate $lambda$. A sleeping particle does not move but it is reactivated in the presen
We study mixing times for the totally asymmetric simple exclusion process (TASEP) on a segment of size $N$ with open boundaries. We focus on the maximal current phase, and prove that the mixing time is of order $N^{3/2}$, up to logarithmic correction