ﻻ يوجد ملخص باللغة العربية
We study ferromagnetic Ising models on finite graphs with an inhomogeneous external field, where a subset of vertices is designated as the boundary. We show that the influence of boundary conditions on any given spin is maximised when the external field is identically $0$. One corollary is that spin-spin correlations are maximised when the external field vanishes and the boundary condition is free, which proves a conjecture of Shlosman. In particular, the random field Ising model on ${mathbb Z}^d$, $dgeq 3$, exhibits exponential decay of correlations in the entire high temperature regime of the pure Ising model. Another corollary is that the pure Ising model in $dgeq 3$ satisfies the conjectured strong spatial mixing property in the entire high temperature regime.
We consider gradient fields $(phi_x:xin mathbb{Z}^d)$ whose law takes the Gibbs--Boltzmann form $Z^{-1}exp{-sum_{< x,y>}V(phi_y-phi_x)}$, where the sum runs over nearest neighbors. We assume that the potential $V$ admits the representation [V(eta):=-
We prove that Ising models on the hypercube with general quadratic interactions satisfy a Poincar{e} inequality with respect to the natural Dirichlet form corresponding to Glauber dynamics, as soon as the operator norm of the interaction matrix is sm
Let a<b, Omega=[a,b]^{Z^d} and H be the (formal) Hamiltonian defined on Omega by H(eta) = frac12 sum_{x,yinZ^d} J(x-y) (eta(x)-eta(y))^2 where J:Z^dtoR is any summable non-negative symmetric function (J(x)ge 0 for all xinZ^d, sum_x J(x)<infty and J
We prove that the Abelian sandpile model on a random binary and binomial tree, as introduced in cite{rrs}, is not critical for all branching probabilities $p<1$; by estimating the tail of the annealed survival time of a random walk on the binary tree
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw