ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and superfluid phases of confined fermions in two-dimensional optical lattices

201   0   0.0 ( 0 )
 نشر من قبل Brian M. Andersen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping potential leads to the coexistence of magnetic and superfluid ordered phases with the normal phase. We study the intriguing shell structures arising from the competition between the magnetic and superfluid order as a function of the filling fraction. In certain cases antiferromagnetism induce superfluidity by charge redistributions. We furthermore demonstrate how these shell structures can be detected as distinct anti-bunching dips and pairing peaks in the density-density correlation function probed in expansion experiments.

قيم البحث

اقرأ أيضاً

Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ o f a corresponding periodic system, and hence display quantum critical behavior. The corresponding fluctuations render the SU(2) symmetry breaking by the confining potential irrelevant, leading to structure form factors for both correlation functions that scale with the same exponent upon increasing the system size, thus giving rise to a (quasi)supersolid.
We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical $Z_2$ gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the Density Matrix Renormalization Group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling $2/3$.
Spin-polarized attractive Fermi gases in one-dimensional (1D) optical lattices are expected to be remarkably good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We model these systems with an attractive Hubbard m odel with population imbalance. By means of the density-matrix renormalization-group method we compute the pairing correlations as well as the static spin and charge structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations exhibit quasi-long range order and oscillations at the wave number expected from FFLO theory. However, we also show by numerically computing the mixed spin-charge static structure factor that charge and spin degrees of freedom appear to be coupled already for small imbalance. We discuss the consequences of this coupling for the observation of the FFLO phase, as well as for the stabilization of the quasi-long range order into long-range order by coupling many identical 1D systems, as in quasi-1D optical lattices.
We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We compare the mean-field effective tunneling energy with the beyond-mean-field one finding that the mean-field tunneling energy is not reliable in the BEC regime of the crossover. Then we solve the Josephson equations of the population imbalance and the relative phase calculating the frequency of tunneling oscillation both in the linear regime and in the nonlinear one. Our results show that the Josephson frequency is larger in the intermediate regime of the BCS-BEC crossover due to the peculiar behavior of the effective tunneling energy in the crossover.
Quantum Dimer Models (QDM) arise as low energy effective models for frustrated magnets. Some of these models have proven successful in generating a scenario for exotic spin liquid phases with deconfined spinons. Doping, i.e. the introduction of mobil e holes, has been considered within the QDM framework and partially studied. A fundamental issue is the possible existence of a superconducting phase in such systems and its properties. For this purpose, the question of the statistics of the mobile holes (or holons) shall be addressed first. Such issues are studied in details in this paper for generic doped QDM defined on the most common two-dimensional lattices (square, triangular, honeycomb, kagome,...) and involving general resonant loops. We prove a general statistical transmutation symmetry of such doped QDM by using composite operators of dimers and holes. This exact transformation enables to define duality equivalence classes (or families) of doped QDM, and provides the analytic framework to analyze dynamical statistical transmutations. We discuss various possible superconducting phases of the system. In particular, the possibility of an exotic superconducting phase originating from the condensation of (bosonic) charge-e holons is examined. A numerical evidence of such a superconducting phase is presented in the case of the triangular lattice, by introducing a novel gauge-invariant holon Greens function. We also make the connection with a Bose-Hubbard model on the kagome lattice which gives rise, as an effective model in the limit of strong interactions, to a doped QDM on the triangular lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا