ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson effect with superfluid fermions in the two-dimensional BCS-BEC crossover

133   0   0.0 ( 0 )
 نشر من قبل Luca Salasnich
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We compare the mean-field effective tunneling energy with the beyond-mean-field one finding that the mean-field tunneling energy is not reliable in the BEC regime of the crossover. Then we solve the Josephson equations of the population imbalance and the relative phase calculating the frequency of tunneling oscillation both in the linear regime and in the nonlinear one. Our results show that the Josephson frequency is larger in the intermediate regime of the BCS-BEC crossover due to the peculiar behavior of the effective tunneling energy in the crossover.



قيم البحث

اقرأ أيضاً

We report on the observation of the Josephson effect between two strongly interacting fermionic superfluids coupled through a thin tunneling barrier. We prove that the relative population and phase are canonically conjugate dynamical variables, coher ently oscillating throughout the entire crossover from molecular Bose-Einstein condensates (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluids. We measure the plasma frequency and we extract the Josephson coupling energy, both exhibiting a non-monotonic behavior with a maximum near the crossover regime. We also observe the transition from coherent to dissipative dynamics, which we directly ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids, opening the door to the study of the dynamics of superfluid Fermi systems in the presence of strong correlations and fluctuations.
Strongly correlated Fermi systems with pairing interactions become superfluid below a critical temperature $T_c$. The extent to which such pairing correlations alter the behavior of the liquid at temperatures $T > T_c$ is a subtle issue that remains an area of debate, in particular regarding the appearance of the so-called pseudogap in the BCS-BEC crossover of unpolarized spin-$1/2$ nonrelativistic matter. To shed light on this, we extract several quantities of crucial importance at and around the unitary limit, namely: the odd-even staggering of the total energy, the spin susceptibility, the pairing correlation function, the condensate fraction, and the critical temperature $T_c$, using a non-perturbative, constrained-ensemble quantum Monte Carlo algorithm.
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along t he crossover from BCS to BEC. Building on a previous study [F. Meier & W. Zwerger, Phys. Rev. A, 64 033610 (2001)] of weakly-interacting bosons, we derive analytic results for the Josephson critical current at zero temperature for homogeneous and trapped systems at arbitrary coupling. The critical current exhibits a maximum near the unitarity limit which arises from the competition between the increasing condensate fraction and a decrease of the chemical potential along the evolution from the BCS to the BEC limit. Our results agree quantitatively with numerical simulations and recent experimental data.
183 - T. Debelhoir , N. Dupuis 2015
We determine the size of the critical region of the superfluid transition in the BCS-BEC crossover of a three-dimensional fermion gas, using a renormalization-group approach to a bosonic theory of pairing fluctuations. For the unitary Fermi gas, we f ind a sizable critical region $[T_G^-,T_G^+]$, of order $T_c$, around the transition temperature $T_c$ with a pronounced asymmetry: $|T_G^+-T_c|/|T_G^--T_c|sim8$. The critical region is strongly suppressed on the BCS side of the crossover but remains important on the BEC side.
We investigate a two-component Fermi gas with unequal spin populations along the BCS-BEC crossover. By using the extended BCS equations and the concept of off-diagonal-long-range-order we derive a formula for the condensate number of Cooper pairs as a function of energy gap, average chemical potential, imbalance chemical potential and temperature. Then we study the zero-temperature condensate fraction of Cooper pairs by varying interaction strength and polarization, finding a depletion of the condensate fraction by increasing the population imbalance. We also consider explicitly the presence of an external harmonic confinement and we study, within the local-density approximation, the phase separation between superfluid and normal phase regions of the polarized fermionic cloud. In particular, we calculate both condensate density profiles and total density profiles from the inner superfluid core to the normal region passing for the interface, where a finite jump in the density is a clear manifestation of this phase-separated regime. Finally, we compare our theoretical results with the available experimental data on the condensate fraction of polarized 6Li atoms [Science 311, 492 (2006)]. These experimental data are in reasonable agreement with our predictions in a suitable range of polarizations, but only in the BCS side of the crossover up to unitarity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا