ﻻ يوجد ملخص باللغة العربية
We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical $Z_2$ gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the Density Matrix Renormalization Group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling $2/3$.
We investigate the rich quantum phase diagram of Wegners theory of discrete Ising gauge fields interacting with $U(1)$ symmetric single-component fermion matter hopping on a two-dimensional square lattice. In particular limits the model reduces to (i
For indistinguishable itinerant particles subject to a superselection rule fixing their total number, a portion of the entanglement entropy under a spatial bipartition of the ground state is due to particle fluctuations between subsystems and thus is
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ o
We examine antiferromagnetic and d-wave superfluid phases of cold fermionic atoms with repulsive interactions in a two-dimensional optical lattice combined with a harmonic trapping potential. For experimentally realistic parameters, the trapping pote
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with $delta$-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Man