ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical tunneling in macroscopic systems

259   0   0.0 ( 0 )
 نشر من قبل Ioana Serban
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate macroscopic dynamical quantum tunneling (MDQT) in the driven Duffing oscillator, charateristic for Josephson junction physics and nanomechanics. Under resonant conditions between stable coexisting states of such systems we calculate the tunneling rate. In macroscopic systems coupled to a heat bath, MDQT can be masked by driving-induced activation. We compare both processes, identify conditions under which tunneling can be detected with present day experimental means and suggest a protocol for its observation.



قيم البحث

اقرأ أيضاً

The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access q uantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point energy. The system could then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet, and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.
We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic enviro nment up to frequencies ~ 4 GHz. We have also derived an expression for the MRT lineshape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.
244 - James A. Blackburn 2020
Switching current distributions have for decades been an indispensable diagnostic tool for studying Josephson junctions. They have played a key role in testing the conjecture of a macroscopic quantum state in junctions at millikelvin temperatures. Th e conventional basis of the test has been the observation of temperature independence of SCD peak widths, and that led to affirmative conclusions about a crossover. A different criterion is proposed here - the distance of the SCD peak from the junction critical current - and its efficacy is demonstrated. This test has distinct advantages in terms of precision, and it is found that, for three example experiments, the evidence for a crossover to the conjectured macroscopic quantum state is unequivocally negative. The implications of this finding for superconducting qubits are considered.
148 - Christoph Kaiser 2010
We have carried out systematic Macroscopic Quantum Tunneling (MQT) experiments on Nb/Al-AlO_x/Nb Josephson junctions (JJs) of different areas. Employing on-chip lumped element inductors, we have decoupled the JJs from their environmental line impedan ces at the frequencies relevant for MQT. This allowed us to study the crossover from the thermal to the quantum regime in the low damping limit. A clear reduction of the crossover temperature with increasing JJ size is observed and found to be in excellent agreement with theory. All junctions were realized on the same chip and were thoroughly characterized before the quantum measurements.
69 - S. Tanda , K. Kagawa , T. Maeno 1997
Experimental results of I-V characteristics near the superconductor-insulator transition observed for disorder-tuned YBaCuO thinfilms are presented. The I-V characteristics exibit new quasiperiodic structures as a function of the current. The current interval, the number of the dI/dV peaks, and the magnetic field dependence of the peaks are consistent with the theoretical predictions of the resonant tunneling of a phase particle ina tilted-cosine potential for asingle Josephson junction with small capacitance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا