ترغب بنشر مسار تعليمي؟ اضغط هنا

A Reassessment of the Evidence for Macroscopic Quantum Tunneling in a Josephson Junction

245   0   0.0 ( 0 )
 نشر من قبل James Blackburn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Switching current distributions have for decades been an indispensable diagnostic tool for studying Josephson junctions. They have played a key role in testing the conjecture of a macroscopic quantum state in junctions at millikelvin temperatures. The conventional basis of the test has been the observation of temperature independence of SCD peak widths, and that led to affirmative conclusions about a crossover. A different criterion is proposed here - the distance of the SCD peak from the junction critical current - and its efficacy is demonstrated. This test has distinct advantages in terms of precision, and it is found that, for three example experiments, the evidence for a crossover to the conjectured macroscopic quantum state is unequivocally negative. The implications of this finding for superconducting qubits are considered.



قيم البحث

اقرأ أيضاً

149 - Christoph Kaiser 2010
We have carried out systematic Macroscopic Quantum Tunneling (MQT) experiments on Nb/Al-AlO_x/Nb Josephson junctions (JJs) of different areas. Employing on-chip lumped element inductors, we have decoupled the JJs from their environmental line impedan ces at the frequencies relevant for MQT. This allowed us to study the crossover from the thermal to the quantum regime in the low damping limit. A clear reduction of the crossover temperature with increasing JJ size is observed and found to be in excellent agreement with theory. All junctions were realized on the same chip and were thoroughly characterized before the quantum measurements.
We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase psi=pm{phi}. The value of {phi} can be chosen by design in the interval 0<{phi}<pi. The junctions used in our e xperiments are fabricated as 0-{pi} Josephson junctions of moderate normalized length with asymmetric 0 and {pi} regions. We show that (a) these {phi} Josephson junctions have two critical currents, corresponding to the escape of the phase {psi} from -{phi} and +{phi} states; (b) the phase {psi} can be set to a particular state by tuning an external magnetic field or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions.
We present an experimental investigation of stochastic switching of a bistable Josephson junctions array resonator with a resonance frequency in the GHz range. As the device is in the regime where the anharmonicity is on the order of the linewidth, t he bistability appears for a pump strength of only a few photons. We measure the dynamics of the bistability by continuously observing the jumps between the two metastable states, which occur with a rate ranging from a few Hz down to a few mHz. The switching rate strongly depends on the pump strength, readout strength and the temperature, following Kramers law. The interplay between nonlinearity and coupling, in this little explored regime, could provide a new resource for nondemolition measurements, single photon switches or even elements for autonomous quantum error correction.
We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, p. 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamic s of the device, which is fully solvable in some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period set by the round-trip time of the resonant cavity.
163 - H. F. Yu , X. B. Zhu , Z. H. Peng 2011
Quantum phase diffusion in a small underdamped Nb/AlO$_x$/Nb junction ($sim$ 0.4 $mu$m$^2$) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step tra nsition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. The transition rate extracted from the experimental switching current distribution follows the predicted Arrhenius law in the thermal regime but is greatly enhanced when MQT becomes dominant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا