ﻻ يوجد ملخص باللغة العربية
We consider a new large-N limit, in which the t Hooft coupling grows with N. We argue that a class of large-N equivalences, which is known to hold in the t Hooft limit, can be extended to this very strongly coupled limit. Hence this limit may lead to a new way of studying corrections to the t Hooft limit, while keeping nice properties of the latter. As a concrete example, we describe large-N equivalences between the ABJM theory and its orientifold projection. The equivalence implies that operators neutral under the projection symmetry have the same correlation functions in two theories at large-N. Usual field theory arguments are valid when t Hooft coupling $lambdasim N/k$ is fixed and observables can be computed by using a planar diagrammatic expansion. With the help of the AdS/CFT correspondence, we argue that the equivalence extends to stronger coupling regions, $Ngg k$, including the M-theory region $Ngg k^5$. We further argue that the orbifold/orientifold equivalences between certain Yang-Mills theories can also be generalized. Such equivalences can be tested both analytically and numerically. Based on calculations of the free energy, we conjecture that the equivalences hold because planar dominance persists beyond the t Hooft limit.
We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of ${cal N}=2$ SQCD on $S^4$, to all orders in the t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free ene
We obtain the perturbative expansion of the free energy on $S^4$ for four dimensional Lagrangian ${cal N}=2$ superconformal field theories, to all orders in the t Hooft coupling, in the planar limit. We do so by using supersymmetric localization, aft
We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymm
Noncompact SO(1,N) sigma-models are studied in terms of their large N expansion in a lattice formulation in dimensions d geq 2. Explicit results for the spin and current two-point functions as well as for the Binder cumulant are presented to next to
Minimal string theory has a number of FZZT brane boundary states; one for each Cardy state of the minimal model. It was conjectured by Seiberg and Shih that all branes in a minimal string theory could be expressed as a linear combination of the brane