ترغب بنشر مسار تعليمي؟ اضغط هنا

A microfabricated sensor for thin dielectric layers

61   0   0.0 ( 0 )
 نشر من قبل Peter Fierlinger
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a sensor for the measurement of thin dielectric layers capable of operation in a variety of environments. The sensor is obtained by microfabricating a capacitor with interleaved aluminum fingers, exposed to the dielectric to be measured. In particular, the device can measure thin layers of solid frozen from a liquid or gaseous medium. Sensitivity to single atomic layers is achievable in many configurations and, by utilizing fast, high sensitivity capacitance read out in a feedback system onto environmental parameters, coatings of few layers can be dynamically maintained. We discuss the design, read out and calibration of sever

قيم البحث

اقرأ أيضاً

The advent of microfabricated ion traps for the quantum information community has allowed research groups to build traps that incorporate an unprecedented number of trapping zones. However, as device complexity has grown, the number of digital-to-ana log converter (DAC) channels needed to control these devices has grown as well, with some of the largest trap assemblies now requiring nearly one hundred DAC channels. Providing electrical connections for these channels into a vacuum chamber can be bulky and difficult to scale beyond the current numbers of trap electrodes. This paper reports on the development and testing of an in-vacuum DAC system that uses only 9 vacuum feedthrough connections to control a 78-electrode microfabricated ion trap. The system is characterized by trapping single and multiple $^{40}$Ca$^+$ ions. The measured axial mode stability, ion heating rates, and transport fidelities for a trapped ion are comparable to systems with external(air-side) commercial DACs.
A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be as low as 80 ppm for light a t 422 nm. The integrated mirror is used to demonstrate light collection from, and imaging of, a single 88 Sr+ ion trapped $169pm4 mu$m above the mirror.
We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize b oth single-qubit operations and nearest-neighbor entangling gates with Raman laser beams, and we interleave the two gate types. We report average single-qubit gate fidelities as high as 0.970(1) for two-, three-, and four-ion chains, characterized with randomized benchmarking. We generate Bell states between the nearest-neighbor pairs of a three-ion chain, with fidelity up to 0.84(2). We combine one- and two-qubit gates to perform quantum process tomography of a CNOT gate in a two-ion chain, and we report an overall fidelity of 0.76(3).
80 - Moonjoo Lee 2018
We dispersively couple a single trapped ion to an optical cavity to extract information about the cavity photon-number distribution in a nondestructive way. The photon-number-dependent AC-Stark shift experienced by the ion is measured via Ramsey spec troscopy. We use these measurements first to obtain the ion-cavity interaction strength. Next, we reconstruct the cavity photon-number distribution for coherent states and for a state with mixed thermal-coherent statistics, finding overlaps above 99% with the calibrated states.
The surface properties of a substrate are among the most important parameters in the printing technology of functional materials, determining not only the printing resolution but also the stability of the printed features. This paper addresses the we tting difficulties encountered during inkjet printing on homogeneous substrates as a result of improper surface properties. We show that the wetting of a substrate and, consequently, the quality of the printed pattern, can be mediated through the deposition of polymeric layers that are a few nanometers thick. The chemical nature of the polymers determines the surface energy and polarity of the thin layer. Some applications, however, require a rigorous adjustment of the surface properties. We propose a simple and precise method of surface-energy tailoring based on the thermal decomposition of poly(methyl methacrylate) (PMMA) layers. A smooth transition in the wetting occurs when the thickness of the PMMA layer approaches zero, probably due to percolating the underlying surface of the substrate, which enables the inkjet printing of complex structures with a high resolution. In particular, the wetting of three substrate-ink systems was successfully adjusted using the thin polymeric layer: (i) a tantalum-oxide-based ink on indium-tin-oxide-coated glass, (ii) a ferroelectric lead zirconate titanate ink on a platinized silicon substrate, and (iii) a silver nanoparticle ink on an alumina substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا