ﻻ يوجد ملخص باللغة العربية
A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be as low as 80 ppm for light at 422 nm. The integrated mirror is used to demonstrate light collection from, and imaging of, a single 88 Sr+ ion trapped $169pm4 mu$m above the mirror.
The prospect of building a quantum information processor underlies many recent advances ion trap fabrication techniques. Potentially, a quantum computer could be constructed from a large array of interconnected ion traps. We report on a micrometer-sc
We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize b
We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabr
Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D i