ﻻ يوجد ملخص باللغة العربية
We investigate the production of nitrogen in star forming galaxies with ultraviolet (UV) radiation detected by the Galaxy Evolution Explorer Satellite (GALEX). We use a sample of 8,745 GALEX emission line galaxies matched to the Sloan Digital Sky Survey (SDSS) spectroscopic sample. We derive both gas-phase oxygen and nitrogen abundances for the sample, and apply stellar population synthesis models to derive stellar masses and star formation histories of the galaxies. We compare oxygen abundances derived using three different diagnostics. We derive the specific star formation rates of the galaxies by modeling the 7-band GALEX+SDSS photometry. We find that galaxies that have log SFR/M$_*$ > -10.0 typically have values of log N/O ~0.05 dex less than galaxies with log SFR/M$_*$ < -10.0 and similar oxygen abundances.
We present the results of nitrogen and oxygen abundance measurements for 185 HII regions spanning a range of radius in 13 spiral galaxies. As expected, the nitrogen-to-oxygen ratio increases linearly with the oxygen abundance for high metallicity HII
We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represe
We discuss the panchromatic properties of 99,088 galaxies selected from the SDSS Data Release 1 spectroscopic sample (a flux-limited sample for 1360 deg^2). These galaxies are positionally matched to sources detected by ROSAT, GALEX, 2MASS, IRAS, GB6
We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the Evolution and Assembly of GaLaxies and their environments (EAGLE) cosmological hydrodynamical simulations. We obtain the evolut
We report the first direct detection with Spitzer of galaxy filaments. Using Spitzer and ancillary optical data, we have discovered two filamentary structures in the outskirts of the cluster Abell 1763. Both filaments point toward Abell 1770 which li