ﻻ يوجد ملخص باللغة العربية
We report the first direct detection with Spitzer of galaxy filaments. Using Spitzer and ancillary optical data, we have discovered two filamentary structures in the outskirts of the cluster Abell 1763. Both filaments point toward Abell 1770 which lies at the same redshift as Abell 1763 (z=0.23), at a projected distance of ~13 Mpc. The X-ray cluster emission is elongated along the same direction. Most of the far-infrared emission is powered by star formation. According to the optical spectra, only one of the cluster members is classified as an active galactic nucleus. Star formation is clearly enhanced in galaxies along the filaments: the fraction of starburst galaxies in the filaments is more than twice than that in other cluster regions. We speculate that these filaments are feeding the cluster Abell 1763 by the infall of galaxies and galaxy groups. Evidence for one of these groups is provided by the analysis of galaxy kinematics in the central cluster region.
We present ALMA CO(3-2) observations at 0.3 arcsec resolution of He2-10, a starburst dwarf galaxy and possible high-z galaxy analogue. The warm dense gas traced by CO(3--2) is found in clumpy filaments that are kinematically and spatially distinct. T
Spitzer-MIPS 24 micron and ground-based observations of the rich galaxy cluster Abell 851 at z=0.41 are used to derive star formation rates from the mid-IR 24 micron and from [O II] 3727 emission. Many cluster galaxies have SFR(24 um)/SFR([O II]) >>
The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, a.k.a BCGs (brightest cluster galaxies), is key to our understanding of active galactic nucleus feedback, and of the impact of
Brightest Cluster Galaxies (BCGs) are mostly elliptical galaxies and very rarely have prominent star formation. We found that five out of 8,812 BCGs are E+A (i.e. post-starburst) galaxies, having the H$delta$~absorption line with an equivalent width
We present an atlas of Spitzer/IRS high resolution (R~600) 10-37um spectra for 24 well known starburst galaxies. The spectra are dominated by fine-structure lines, molecular hydrogen lines, and emission bands of polycyclic aromatic hydrocarbons. Six