ﻻ يوجد ملخص باللغة العربية
We experimentally measure the lower and upper bounds of concurrence for a set of two-qubit mixed quantum states using photonic systems. The measured concurrence bounds are in agreement with the results evaluated from the density matrices reconstructed through quantum state tomography. In our experiment, we propose and demonstrate a simple method to provide two faithful copies of a two-photon mixed state required for parity measurements: Two photon pairs generated by two neighboring pump laser pulses through optical parametric down conversion processes represent two identical copies. This method can be conveniently generalized for entanglement estimation of multi-photon mixed states.
Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of
A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior ex
The bounds of concurrence in [F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505] and [C. Zhang textit{et. al.}, Phys. Rev. A 78 (2008) 042308] are proved by using two properties of the fidelity. In two-qubit systems, for a given value
We study the energy transfer process in quantum battery systems consisting of multiple central spins and bath spins. Here with quantum battery we refer to the central spins, whereas the bath serves as the charger. For the single central-spin battery,