ﻻ يوجد ملخص باللغة العربية
We propose the variable selection procedure incorporating prior constraint information into lasso. The proposed procedure combines the sample and prior information, and selects significant variables for responses in a narrower region where the true parameters lie. It increases the efficiency to choose the true model correctly. The proposed procedure can be executed by many constrained quadratic programming methods and the initial estimator can be found by least square or Monte Carlo method. The proposed procedure also enjoys good theoretical properties. Moreover, the proposed procedure is not only used for linear models but also can be used for generalized linear models({sl GLM}), Cox models, quantile regression models and many others with the help of Wang and Leng (2007)s LSA, which changes these models as the approximation of linear models. The idea of combining sample and prior constraint information can be also used for other modified lasso procedures. Some examples are used for illustration of the idea of incorporating prior constraint information in variable selection procedures.
We propose a Bayesian procedure for simultaneous variable and covariance selection using continuous spike-and-slab priors in multivariate linear regression models where q possibly correlated responses are regressed onto p predictors. Rather than rely
We study estimation and variable selection in non-Gaussian Bayesian generalized additive models (GAMs) under a spike-and-slab prior for grouped variables. Our framework subsumes GAMs for logistic regression, Poisson regression, negative binomial regr
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs fro
In this paper, we extend graph-based identification methods by allowing background knowledge in the form of non-zero parameter values. Such information could be obtained, for example, from a previously conducted randomized experiment, from substantiv
We consider regression in which one predicts a response $Y$ with a set of predictors $X$ across different experiments or environments. This is a common setup in many data-driven scientific fields and we argue that statistical inference can benefit fr