ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending the range of error estimates for radial approximation in Euclidean space and on spheres

163   0   0.0 ( 0 )
 نشر من قبل Robert Brownlee
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We adapt Schabacks error doubling trick [R. Schaback. Improved error bounds for scattered data interpolation by radial basis functions. Math. Comp., 68(225):201--216, 1999.] to give error estimates for radial interpolation of functions with smoothness lying (in some sense) between that of the usual native space and the subspace with double the smoothness. We do this for both bounded subsets of R^d and spheres. As a step on the way to our ultimate goal we also show convergence of pseudoderivatives of the interpolation error.



قيم البحث

اقرأ أيضاً

189 - R. A. Brownlee 2007
The error between appropriately smooth functions and their radial basis function interpolants, as the interpolation points fill out a bounded domain in R^d, is a well studied artifact. In all of these cases, the analysis takes place in a natural func tion space dictated by the choice of radial basis function -- the native space. The native space contains functions possessing a certain amount of smoothness. This paper establishes error estimates when the function being interpolated is conspicuously rough.
We consider the constructive a priori error estimates for a full discrete numerical solution of the heat equation with time-periodic condition.
We present the error analysis of Lagrange interpolation on triangles. A new textit{a priori} error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are i mposed in order to get this type of error estimates.
We consider the Serre system of equations which is a nonlinear dispersive system that models two-way propagation of long waves of not necessarily small amplitude on the surface of an ideal fluid in a channel. We discretize in space the periodic initi al-value problem for the system using the standard Galerkin finite element method with smooth splines on a uniform mesh and prove an optimal-order $L^{2}$-error estimate for the resulting semidiscrete approximation. Using the fourth-order accurate, explicit, `classical Runge-Kutta scheme for time stepping we construct a highly accurate fully discrete scheme in order to approximate solutions of the system, in particular solitary-wave solutions, and study numerically phenomena such as the resolution of general initial profiles into sequences of solitary waves, and overtaking collisions of pairs of solitary waves propagating in the same direction with different speeds.
215 - K. Mitra , M. Vohralik 2021
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli c-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا