ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS

31   0   0.0 ( 0 )
 نشر من قبل William Percival
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a method to constrain general cosmological models using Baryon Acoustic Oscillation (BAO) distance measurements from galaxy samples covering different redshift ranges, and apply this method to analyse samples drawn from the SDSS and 2dFGRS. BAO are detected in the clustering of the combined 2dFGRS and SDSS main galaxy samples, and measure the distance--redshift relation at z=0.2. BAO in the clustering of the SDSS luminous red galaxies measure the distance--redshift relation at z=0.35. The observed scale of the BAO calculated from these samples and from the combined sample are jointly analysed using estimates of the correlated errors, to constrain the form of the distance measure D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3). Here D_A is the angular diameter distance, and H(z) is the Hubble parameter. This gives r_s/D_V(0.2)=0.1980+/-0.0058 and r_s/D_V(0.35)=0.1094+/-0.0033 (1sigma errors), with correlation coefficient of 0.39, where r_s is the comoving sound horizon scale at recombination. Matching the BAO to have the same measured scale at all redshifts then gives D_V(0.35)/D_V(0.2)=1.812+/-0.060. The recovered ratio is roughly consistent with that predicted by the higher redshift SNLS supernovae data for Lambda cosmologies, but does require slightly stronger cosmological acceleration at low redshift. If we force the cosmological model to be flat with constant w, then we find Om_m=0.249+/-0.018 and w=-1.004+/-0.089 after combining with the SNLS data, and including the WMAP measurement of the apparent acoustic horizon angle in the CMB.

قيم البحث

اقرأ أيضاً

Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter $H(z)$ and angular diameter distance $D_A(z)$. These measurements are typically obtained from moments o f the measured 2-point clustering statistics, with respect to the cosine of the angle to the line of sight $mu$. The position of the BAO features in each moment depends on a combination of $D_A(z)$ and $H(z)$, and measuring the positions in two or more moments breaks this parameter degeneracy. We derive analytic formulae for the parameter combinations measured from moments given by Legendre polynomials, power laws and top-hat Wedges in $mu$, showing explicitly what is being measured by each in real-space for both the correlation function and power spectrum, and in redshift-space for the power spectrum. The large volume covered by modern galaxy samples means that the correlation function can be well approximated as having no correlations at different $mu$ on the BAO scale, and that the errors on this scale are approximately independent of $mu$. Using these approximations, we derive the information content of various moments. We show that measurements made using either the monopole and quadrupole, or the monopole and $mu^2$ power-law moment, are optimal for anisotropic BAO measurements, in that they contain all of the available information using two moments, the minimal number required to measure both $H(z)$ and $D_A(z)$. We test our predictions using 600 mock galaxy samples, matched to the SDSS-III Baryon Oscillation Spectroscopic Survey CMASS sample, finding a good match to our analytic predictions. Our results should enable the optimal extraction of information from future galaxy surveys such as eBOSS, DESI and Euclid.
We report five measurements of the transverse baryonic acoustic scale, $theta_{BAO}$, obtained from the angular two-point correlation function calculation for Luminous Red Galaxies of the eleventh data release of the Sloan Digital Sky Survey (SDSS). Each measurement has been obtained by considering a thin redshift shell ($delta z = 0.01$ and $0.02$) in the interval $ z in [0.565, 0.660] $, which contains a large density of galaxies ($sim 20,000$ galaxies/redshift shell). Differently from the three-dimensional Baryon Acoustic Oscillations (BAO) measurements, these data points are obtained almost model-independently and provide a Cosmic Microwave Background (CMB)-independent way to estimate the sound horizon $ r_s $. Assuming a time-dependent equation-of-state parameter for the dark energy, we also discuss constraints on the main cosmological parameters from $theta_{BAO}$ and CMB data.
We measure the cosmological matter density by observing the positions of baryon acoustic oscillations in the clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We jointly analyse the main galaxies and LRGs in the SDSS DR5 sample, using ov er half a million galaxies in total. The oscillations are detected with 99.74% confidence (3.0sigma assuming Gaussianity) compared to a smooth power spectrum. When combined with the observed scale of the peaks within the CMB, we find a best-fit value of Omega_m=0.256+0.029-0.024 (68% confidence interval), for a flat Lambda cosmology when marginalising over the Hubble parameter and the baryon density. This value of the matter density is derived from the locations of the baryon oscillations in the galaxy power spectrum and in the CMB, and does not include any information from the overall shape of the power spectra. This is an extremely clean cosmological measurement as the physics of the baryon acoustic oscillation production is well understood, and the positions of the oscillations are expected to be independent of systematics such as galaxy bias.
We present results from the 2D anisotropic Baryon Acoustic Oscillation (BAO) signal present in the final dataset from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: firstly using the full shape of the 2D correlation function and secondly focussing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalise over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of $Omega_c h^2$, $H(z)$, and $D_A(z)$ for three redshift bins with effective redshifts $z = 0.44$, $0.60$, and $0.73$. Within these bins and methodologies, we recover constraints between 5% and 22% error. Our cosmological constraints are consistent with Flat $Lambda$CDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey (BOSS).
Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data r elease (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z = [2.20,2.25] produce the angular BAO scale theta_BAO = 1.77 +- 0.31 deg with a statistical significance of 2.12 sigma (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the LCDM concordance model. Additionally, we show that the BAO signal is robust -although with less statistical significance- under diverse bin-size choices and under small displacements of the quasars angular coordinates. Finally, we also performed cosmological parameter analyses comparing the theta_BAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters Omega_M, w_0 and w_a are in excellent agreement with the LCDM concordance model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا