ﻻ يوجد ملخص باللغة العربية
Following a quasi model-independent approach we measure the transversal BAO mode at high redshift using the two-point angular correlation function (2PACF). The analyses done here are only possible now with the quasar catalogue from the twelfth data release (DR12Q) from the Sloan Digital Sky Survey, because it is spatially dense enough to allow the measurement of the angular BAO signature with moderate statistical significance and acceptable precision. Our analyses with quasars in the redshift interval z = [2.20,2.25] produce the angular BAO scale theta_BAO = 1.77 +- 0.31 deg with a statistical significance of 2.12 sigma (i.e., 97% confidence level), calculated through a likelihood analysis performed using the theoretical covariance matrix sourced by the analytical power spectra expected in the LCDM concordance model. Additionally, we show that the BAO signal is robust -although with less statistical significance- under diverse bin-size choices and under small displacements of the quasars angular coordinates. Finally, we also performed cosmological parameter analyses comparing the theta_BAO predictions for wCDM and w(a)CDM models with angular BAO data available in the literature, including the measurement obtained here, jointly with CMB data. The constraints on the parameters Omega_M, w_0 and w_a are in excellent agreement with the LCDM concordance model.
The clustering properties of the Universe at large-scales are currently being probed at various redshifts through several cosmological tracers and with diverse statistical estimators. Here we use the three-point angular correlation function (3PACF) t
Baryon Acoustic Oscillations are considered to be a very robust standard ruler against various systematics. This premise has been tested against observational systematics, but not to the level required for the next generation of galaxy surveys such a
As part of the Sloan Digital Sky Survey IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS wil
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Ly$alpha$-forest flux-transmission at a mean redshift $z=2.40$. The measurement uses the complete SDSS-III data sample: 168,889 forests and 23
We present a new measurement of the optical Quasar Luminosity Function (QLF), using data from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III: BOSS). From the SDSS-III Data Release Nine (DR9), we select a uniform s