ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the matter density using baryon oscillations in the SDSS

32   0   0.0 ( 0 )
 نشر من قبل William Percival
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the cosmological matter density by observing the positions of baryon acoustic oscillations in the clustering of galaxies in the Sloan Digital Sky Survey (SDSS). We jointly analyse the main galaxies and LRGs in the SDSS DR5 sample, using over half a million galaxies in total. The oscillations are detected with 99.74% confidence (3.0sigma assuming Gaussianity) compared to a smooth power spectrum. When combined with the observed scale of the peaks within the CMB, we find a best-fit value of Omega_m=0.256+0.029-0.024 (68% confidence interval), for a flat Lambda cosmology when marginalising over the Hubble parameter and the baryon density. This value of the matter density is derived from the locations of the baryon oscillations in the galaxy power spectrum and in the CMB, and does not include any information from the overall shape of the power spectra. This is an extremely clean cosmological measurement as the physics of the baryon acoustic oscillation production is well understood, and the positions of the oscillations are expected to be independent of systematics such as galaxy bias.

قيم البحث

اقرأ أيضاً

We introduce a method to constrain general cosmological models using Baryon Acoustic Oscillation (BAO) distance measurements from galaxy samples covering different redshift ranges, and apply this method to analyse samples drawn from the SDSS and 2dFG RS. BAO are detected in the clustering of the combined 2dFGRS and SDSS main galaxy samples, and measure the distance--redshift relation at z=0.2. BAO in the clustering of the SDSS luminous red galaxies measure the distance--redshift relation at z=0.35. The observed scale of the BAO calculated from these samples and from the combined sample are jointly analysed using estimates of the correlated errors, to constrain the form of the distance measure D_V(z)=[(1+z)^2D_A^2cz/H(z)]^(1/3). Here D_A is the angular diameter distance, and H(z) is the Hubble parameter. This gives r_s/D_V(0.2)=0.1980+/-0.0058 and r_s/D_V(0.35)=0.1094+/-0.0033 (1sigma errors), with correlation coefficient of 0.39, where r_s is the comoving sound horizon scale at recombination. Matching the BAO to have the same measured scale at all redshifts then gives D_V(0.35)/D_V(0.2)=1.812+/-0.060. The recovered ratio is roughly consistent with that predicted by the higher redshift SNLS supernovae data for Lambda cosmologies, but does require slightly stronger cosmological acceleration at low redshift. If we force the cosmological model to be flat with constant w, then we find Om_m=0.249+/-0.018 and w=-1.004+/-0.089 after combining with the SNLS data, and including the WMAP measurement of the apparent acoustic horizon angle in the CMB.
In this letter we describe a new method to use Baryon Acoustic Oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter dista nce $(D_{A})$ maximum and the Hubble function $(H)$ evaluated at the same maximum-condition redshift, which includes speed of light $c$. We note the close analogy of the BAO probe with a laboratory experiment: here we have $D_{A}$ which plays the role of a standard (cosmological) ruler, and $H^{-1}$, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of $c$.
We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.
91 - Hu Zhan 2008
Since type Ia Supernovae (SNe) explode in galaxies, they can, in principle, be used as the same tracer of the large-scale structure as their hosts to measure baryon acoustic oscillations (BAOs). To realize this, one must obtain a dense integrated sam pling of SNe over a large fraction of the sky, which may only be achievable photometrically with future projects such as the Large Synoptic Survey Telescope. The advantage of SN BAOs is that SNe have more uniform luminosities and more accurate photometric redshifts than galaxies, but the disadvantage is that they are transitory and hard to obtain in large number at high redshift. We find that a half-sky photometric SN survey to redshift z = 0.8 is able to measure the baryon signature in the SN spatial power spectrum. Although dark energy constraints from SN BAOs are weak, they can significantly improve the results from SN luminosity distances of the same data, and the combination of the two is no longer sensitive to cosmic microwave background priors.
The 2-point angular correlation function $w(theta)$ (2PACF), where $theta$ is the angular separation between pairs of galaxies, provides the transversal Baryon Acoustic Oscillation (BAO) signal almost model-independently. In this paper we use 409,337 luminous red galaxies in the redshift range $z = [0.440,0.555]$ obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate $theta_{rm{BAO}}(z)$ from the 2PACF at six redshift {shells}. Since noise and systematics can hide the BAO signature in the $w - theta$ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model-dependence in the analysis, namely, the value of the acoustic scale from Cosmic Microwave Background (CMB) measurements and the correction in the $theta_{rm{BAO}}(z)$ position due to projection effects. Constraints on the dark energy equation-of-state parameter w$(z)$ from the $theta_{rm{BAO}}(z)$ diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard $Lambda$CDM model as well as some of its extensions are in good agreement with these $theta_{rm{BAO}}(z)$ measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا