ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of hydrogen impurity states in silicon and insulators at low implantation energies

52   0   0.0 ( 0 )
 نشر من قبل Thomas Prokscha
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of hydrogen-like muonium (Mu) has been studied as a function of implantation energy in intrinsic Si, thin films of condensed van der Waals gases (N2, Ne, Ar, Xe), fused and crystalline quartz and sapphire. By varying the initial energy of positive muons (mu+) between 1 and 30 keV the number of electron-hole pairs generated in the ionization track of the mu+ can be tuned between a few and several thousand. The results show the strong suppression of the formation of those Mu states that depend on the availability of excess electrons. This indicates, that the role of H-impurity states in determining electric properties of semiconductors and insulators depends on the way how atomic H is introduced into the material.

قيم البحث

اقرأ أيضاً

Molecular para-hydrogen has been proposed theoretically as a possible candidate for superfluidity, but the eventual superfluid transition is hindered by its crystallization. In this work, we study a metastable non crystalline phase of bulk p-H2 by me ans of the Path Integral Monte Carlo method in order to investigate at which temperature this system can support superfluidity. By choosing accurately the initial configuration and using a non commensurate simulation box, we have been able to frustrate the formation of the crystal in the simulated system and to calculate the temperature dependence of the one-body density matrix and of the superfluid fraction. We observe a transition to a superfluid phase at temperatures around 1 K. The limit of zero temperature is also studied using the diffusion Monte Carlo method. Results for the energy, condensate fraction, and structure of the metastable liquid phase at T=0 are reported and compared with the ones obtained for the stable solid phase.
76 - P. T. Greenland 2010
We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.
We study the problem of non-magnetic impurities adsorbed on bilayer graphene in the diluted regime. We analyze the impurity spectral densities for various concentrations and gate fields. We also analyze the effect of the adsorbate on the local densit y of states (LDOS) of the different C atoms in the structure and present some evidence of strong localization for the electronic states with energies close to the Dirac point.
The formation of grains in the interstellar medium, i.e., at low temperature, has been proposed as a possibility to solve the lifetime problem of cosmic dust. This process lacks a firm experimental basis, which is the goal of this study. We have inve stigated the condensation of SiO molecules at low temperature using neon matrix and helium droplet isolation techniques. The energies of SiO polymerization reactions have been determined experimentally with a calorimetric method and theoretically with calculations based on the density functional theory. The combined experimental and theoretical values have revealed the formation of cyclic (SiO)$_k$ ($k$ = 2--3) clusters inside helium droplets at $T$ = 0.37 K. Therefore, the oligomerization of SiO molecules is found to be barrierless and is expected to be fast in the low-temperature environment of the interstellar medium on the surface of dust grains. The incorporation of numerous SiO molecules in helium droplets leads to the formation of nanoscale amorphous SiO grains. Similarly, the annealing and evaporation of SiO-doped Ne matrices lead to the formation of solid amorphous SiO on the substrate. The structure and composition of the grains were determined by infrared absorption spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Our results support the hypothesis that interstellar silicates textbf{can be formed} in the low temperature regions of the interstellar medium by accretion through barrierless reactions.
We investigate transport in phosphorus-doped buried-channel metal-oxide-semiconductor field-effect transistors at temperatures between 10 and 295 K. In a range of doping concentration between around 2.1 and 8.7 x 1017 cm-3, we find that a clear peak emerges in the conductance versus gate-voltage curves at low temperature. In addition, temperature dependence measurements reveal that the conductance obeys a variable-range-hopping law up to an unexpectedly high temperature of over 100 K. The symmetric dual-gate configuration of the silicon-on-insulator we use allows us to fully characterize the vertical-bias dependence of the conductance. Comparison to computer simulation of the phosphorus impurity band depth-profile reveals how the spatial variation of the impurity-band energy determines the hopping conduction in transistor structures. We conclude that the emergence of the conductance peak and the high-temperature variable-range hopping originate from the band bending and its change by the gate bias. Moreover, the peak structure is found to be strongly related to the density of states (DOS) of the phosphorus impurity band, suggesting the possibility of performing a novel spectroscopy for the DOS of phosphorus, the dopant of paramount importance in Si technology, through transport experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا