ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Control of Rydberg States in Silicon

123   0   0.0 ( 0 )
 نشر من قبل Thornton Greenland
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. T. Greenland




اسأل ChatGPT حول البحث

We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.



قيم البحث

اقرأ أيضاً

By moving the pivot of a pendulum rapidly up and down one can create a stable position with the pendulums bob above the pivot rather than below it. This surprising and counterintuitive phenomenon is a widespread feature of driven systems and carries over into the quantum world. Even when the static properties of a quantum system are known, its response to an explicitly time-dependent variation of its parameters may be highly nontrivial, and qualitatively new states can appear that were absent in the original system. In quantum mechanics the archetype for this kind of behaviour is an atom in a radiation field, which exhibits a number of fundamental phenomena such as the modification of its g-factor in a radio-frequency field and the dipole force acting on an atom moving in a spatially varying light field. These effects can be successfully described in the so-called dressed atom picture. Here we show that the concept of dressing can also be applied to macroscopic matter waves, and that the quantum states of dressed matter waves can be coherently controlled. In our experiments we use Bose-Einstein condensates in driven optical lattices and demonstrate that the many-body state of this system can be adiabatically and reversibly changed between a superfluid and a Mott insulating state by varying the amplitude of the driving. Our setup represents a versatile testing ground for driven quantum systems, and our results indicate the direction towards new quantum control schemes for matter waves.
Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, e.g. in chemistry, medicine, materials science and mining. Nuclear spins also featured in early ideas and d emonstrations of quantum information processing. Scaling up these ideas requires controlling individual nuclei, which can be detected when coupled to an electron. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods relied upon transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects the nuclear coherence. Here we demonstrate the coherent quantum control of a single antimony (spin-7/2) nucleus, using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea first proposed in 1961 but never realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction, in the presence of lattice strain, results in coherent nuclear spin transitions. The spin dephasing time, 0.1 seconds, surpasses by orders of magnitude those obtained via methods that require a coupled electron spin for electrical drive. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots could pave the way to scalable nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.
Great efforts have been made to the investigation of defects in silicon carbide for their attractive optical and spin properties. However, most of the researches are implemented at low and room temperature. Little is known about the spin coherent pro perty at high temperature. Here, we experimentally demonstrate coherent control of divacancy defect spins in silicon carbide above 550 K. The spin properties of defects ranging from room temperature to 600 K are investigated, in which the zero-field-splitting is found to have a polynomial temperature dependence and the spin coherence time decreases as the temperature increases. Moreover, as an example of application, we demonstrate a thermal sensing using the Ramsey method at about 450 K. Our experimental results would be useful for the investigation of high temperature properties of defect spins and silicon carbide-based broad-temperature range quantum sensing.
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden tify and control individual host nuclear spins. This work presents the first experimental detection and manipulation of a single $^{29}$Si nuclear spin. The quantum non-demolition (QND) single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of $T_2 = 6.3(7)$ ms - in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the $^{29}$Si atom under investigation. These results demonstrate that single $^{29}$Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.
Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins i n silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration six-fold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature and the coherence time T2 can be reached to around 17.1 {mu}s. Furthermore, investigation of fluorescence properties of single NV centers shows that they are room temperature photostable single photon sources at telecom range. Taking advantages of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا