ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing anthropic predictions for Lambda and the CMB temperature

44   0   0.0 ( 0 )
 نشر من قبل John Peacock
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.A. Peacock




اسأل ChatGPT حول البحث

It has been claimed that the observed magnitude of the vacuum energy density is consistent with the distribution predicted in anthropic models, in which an ensemble of universes is assumed. This calculation is revisited, without making the assumption that the CMB temperature is known, and considering in detail the possibility of a recollapsing universe. New accurate approximations for the growth of perturbations and the mass function of dark haloes are presented. Structure forms readily in the recollapsing phase of a model with negative Lambda, so collapse fraction alone cannot forbid Lambda from being large and negative. A negative Lambda is disfavoured only if we assume that formation of observers can be neglected once the recollapsing universe has heated to T > 8 K. For the case of positive Lambda, however, the current universe does occupy a extremely typical position compared to the predicted distribution on the Lambda-T plane. Contrasting conclusions can be reached if anthropic arguments are applied to the curvature of the universe, and we discuss the falsifiability of this mode of anthropic reasoning.

قيم البحث

اقرأ أيضاً

The anomalous lack of large angle temperature correlations has been a surprising feature of the cosmic microwave background (CMB) since first observed by COBE-DMR and subsequently confirmed and strengthened by the Wilkinson Microwave Anisotropy Probe . This anomaly may point to the need for modifications of the standard model of cosmology or may indicate that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarization observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-$Q$ Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this $TQ$-correlation is observed to be sufficiently large over an appropriately chosen angular range, then the hypothesis can be rejected at a high confidence level. We quantify these statements and optimize the statistics we have constructed to apply to the anticipated polarization data. We find that we can construct a statistic that has a 25 per cent chance of excluding the hypothesis that we live in a rare realization of LCDM at the 99.9 per cent confidence level.
59 - R. Pittau 2010
I present a new and reliable method to test the numerical accuracy of NLO calculations based on modern OPP/Generalized Unitarity techniques. A convenient solution to rescue most of the detected numerically inaccurate points is also proposed.
(Abridged). We present numerical simulations of isothermal, MHD, supersonic turbulence, designed to test various hypotheses frequently assumed in star formation(SF) theories. We consider three simulations, each with a different combination of physica l size, rms sonic Mach number, and Jeans parameter, but chosen as to give the same value of the virial parameter and to conform with Larsons scaling relations. As in the non-magnetic case: we find no simultaneously subsonic and super-Jeans structures in our MHD simulations. We find that the fraction of small-scale super-Jeans structures increases when self gravity is turned on, and that the production of gravitationally unstable dense cores by turbulence alone is very low. This implies that self-gravity is in general necessary not only to induce the collapse of Jeans-unstable cores, but also to form them. We find that denser regions tend to have more negative values of the velocity divergence, implying a net inwards flow towards the regions centers. We compare the results from our simulations with the predictions from the recent SF theories by Krumholz & McKee, Padoan & Nordlund, and Hennebelle & Chabrier, using the expressions recently provided by Federrath & Klessen. We find that none of these theories reproduces the dependence of the SFEff with Ms observed in our simulations in the MHD case. The SFEff predicted by the theories ranges between half and one order of magnitude larger than what we observe in the simulations in both the HD and the MHD cases. We conclude that the type of flow used in simulations like the ones presented here and assumed in recent SF theories, may not correctly represent the flow within actual clouds, and that theories that assume it does may be missing a fundamental aspect of the flow. We suggest that a more realistic regime may be that of hierarchical gravitational collapse.
90 - William Cowley 2017
We present predictions for the outcome of deep galaxy surveys with the $James$ $Webb$ $Space$ $Telescope$ ($JWST$) obtained from a physical model of galaxy formation in $Lambda$CDM. We use the latest version of the GALFORM model, embedded within a ne w ($800$ Mpc)$^{3}$ dark matter only simulation with a halo mass resolution of $M_{rm halo}>2times10^{9}$ $h^{-1}$ M$_{odot}$. For computing full UV-to-mm galaxy spectral energy distributions, including the absorption and emission of radiation by dust, we use the spectrophotometric radiative transfer code GRASIL. The model is calibrated to reproduce a broad range of observational data at $zlesssim6$, and we show here that it can also predict evolution of the rest-frame far-UV luminosity function for $7lesssim zlesssim10$ which is in good agreement with observations. We make predictions for the evolution of the luminosity function from $z=16$ to $z=0$ in all broadband filters on the Near InfraRed Camera (NIRCam) and Mid InfraRed Instrument (MIRI) on $JWST$ and present the resulting galaxy number counts and redshift distributions. Our fiducial model predicts that $sim1$ galaxy per field of view will be observable at $zsim11$ for a $10^4$ s exposure with NIRCam. A variant model, which produces a higher redshift of reionization in better agreement with $Planck$ data, predicts number densities of observable galaxies $sim5times$ greater at this redshift. Similar observations with MIRI are predicted not to detect any galaxies at $zgtrsim6$. We also make predictions for the effect of different exposure times on the redshift distributions of galaxies observable with $JWST$, and for the angular sizes of galaxies in $JWST$ bands.
We review advances in low temperature detector (LTD) arrays for Cosmic Microwave Background (CMB) polarization experiments, with a particular emphasis on imaging arrays. We briefly motivate the science case, which has spurred a large number of indepe ndent experimental efforts. We describe the challenges associated with CMB polarization measurements and how these challenges impact LTD design. Key aspects of an ideal CMB polarization imaging array are developed and compared to the current state-of-the-art. These aspects include dual-polarization-sensitivity, background-limited detection over a 10:1 bandwidth ratio, and frequency independent angular responses. Although existing technology lacks all of this capability, todays CMB imaging arrays achieve many of these ideals and are highly advanced superconducting integrated circuits. Deployed arrays map the sky with pixels that contain elements for beam formation, polarization diplexing, passband definition in multiple frequency channels, and bolometric sensing. Several detector architectures are presented. We comment on the implementation of both transition-edge-sensor bolometers and microwave kinetic inductance detectors for CMB applications. Lastly, we discuss fabrication capability in the context of next-generation instruments that call for $sim 10^6$ sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا