ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Angle CMB Suppression and Polarization Predictions

172   0   0.0 ( 0 )
 نشر من قبل Craig Copi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The anomalous lack of large angle temperature correlations has been a surprising feature of the cosmic microwave background (CMB) since first observed by COBE-DMR and subsequently confirmed and strengthened by the Wilkinson Microwave Anisotropy Probe. This anomaly may point to the need for modifications of the standard model of cosmology or may indicate that our Universe is a rare statistical fluctuation within that model. Further observations of the temperature auto-correlation function will not elucidate the issue; sufficiently high precision statistical observations already exist. Instead, alternative probes are required. In this work we explore the expectations for forthcoming polarization observations. We define a prescription to test the hypothesis that the large-angle CMB temperature perturbations in our Universe represent a rare statistical fluctuation within the standard cosmological model. These tests are based on the temperature-$Q$ Stokes parameter correlation. Unfortunately these tests cannot be expected to be definitive. However, we do show that if this $TQ$-correlation is observed to be sufficiently large over an appropriately chosen angular range, then the hypothesis can be rejected at a high confidence level. We quantify these statements and optimize the statistics we have constructed to apply to the anticipated polarization data. We find that we can construct a statistic that has a 25 per cent chance of excluding the hypothesis that we live in a rare realization of LCDM at the 99.9 per cent confidence level.



قيم البحث

اقرأ أيضاً

(abridged) We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the $Lambda$CDM model. To complement large-angle polarization, we consider the high-resolution CMB datasets from either WMAP or Planck, as well as CMB lensing as traced by Planck. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low-resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth $tau$, of order ~$2sigma$, robust to the choice of the complementary high-l dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find $tau = 0.066 ^{+0.012}_{-0.013}$, again very stable against the particular choice for high-$ell$ data. We find that the amplitude of primordial fluctuations $A_s$, notoriously degenerate with $tau$, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between $0.5$ and $1sigma$. In particular, cleaning dust with plancks 353 GHz data imposes a $1sigma$ downward shift in the value of the Hubble constant $H_0$, significantly contributing to the tension reported between CMB based and direct measurements of $H_0$. On the other hand, we find that the appearance of the so-called low $ell$ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-$ell$ dataset employed.
90 - Hua Zhai , Si-Yu Li , Mingzhe Li 2019
Cosmological CPT violation will rotate the polarized direction of CMB photons, convert partial CMB E mode into B mode and vice versa. It will generate non-zero EB, TB spectra and change the EE, BB, TE spectra. This phenomenon gives us a way to detect the CPT-violation signature from CMB observations, and also provides a new mechanism to produce B mode polarization. In this paper, we perform a global analysis on tensor-to-scalar ratio $r$ and polarization rotation angles based on current CMB datasets with both low $ell$ (Planck, BICEP2/Keck Array) and high $ell$ (POLARBEAR, SPTpol, ACTPol). Benefited from the high precision of CMB data, we obtain the isotropic rotation angle $bar{alpha} = -0.01^circ pm 0.37^circ $ at 68% C.L., the variance of the anisotropic rotation angles $C^{alpha}(0)<0.0032,mathrm{rad}^2$, the scale invariant power spectrum $D^{alphaalpha}_{ell in [2, 350]}<4.71times 10^{-5} ,mathrm{rad}^2$ and $r<0.057$ at 95% C.L.. Our result shows that with the polarization rotation effect, the 95% upper limit on $r$ gets tightened by 17%.
A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) offers a way of discriminating inflationary scenarios and testing alternative models of the early universe. This has motivated the cons iderable effort that has recently gone into the study of theoretical features of primordial non-Gaussianity and its detection in CMB data. Among such attempts to detect non-Gaussianity, there is a procedure that is based upon two indicators constructed from the skewness and kurtosis of large-angle patches of CMB maps, which have been proposed and used to study deviation from Gaussianity in the WMAP data. Simulated CMB maps equipped with realistic primordial non-Gaussianity are essential tools to test the viability of non-Gaussian indicators in practice, and also to understand the effect of systematics, foregrounds and other contaminants. In this work we extend and complement the results of our previous works by performing an analysis of non-Gaussianity of the high-angular resolution simulated CMB temperature maps endowed with non-Gaussianity of the local type, for which the level of non-Gaussianity is characterized by the dimensionless parameter $f_{rm NL}^{rm local}$
187 - A. Bernui , M.J. Reboucas 2011
[Abridged] In recent works we have proposed two new large-angle non-Gaussianity indicators based on skewness and kurtosis of patches of CMB sky-sphere, and used them to find out significant deviation from Gaussianity in frequency bands and foreground -reduced CMB maps. Simulated CMB maps with assigned type and amplitude of primordial non-Gaussianity are important tools to determine the strength, sensitivity and limitations of non-Gaussian estimators. Here we investigate whether and to what extent our non-Gaussian indicators have sensitivity to detect non-Gaussianity of local type, particularly with amplitude within the seven-year WMAP bounds. We make a systematic study by employing our statistical tools to generate maps of skewness and kurtosis from several thousands of simulated maps equipped with non-Gaussianity of local type of various amplitudes. We show that our indicators can be used to detect large-angle local-type non-Gaussianity only for relatively large values of the non-linear parameter $f_{rm NL}^{rm local}$. Thus, our indicators have not enough sensitivity to detect deviation from Gaussianity with the non-linear parameter within the seven-year WMAP bounds. This result along with the outcomes of frequency bands and foreground-reduced analyses suggest that non-Gaussianity captured in the previous works by our indicators is not of primordial origin, although it might have a primordial component. We have also made a comparative study of non-Gaussianity of simulated maps and of the full-sky WMAP foreground-reduced seven-year ILC-7yr map. An outcome of this analysis is that the level of non-Gaussianity of ILC-7yr map is higher than that of the simulated maps for $f_{rm NL}^{rm local}$ within WMAP bounds. This provides quantitative indications on the suitability of the ILC-7yr map as a Gaussian reconstruction of the full-sky CMB.
118 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of whi ch are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا