ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement, fidelity and topological entropy in a quantum phase transition to topological order

289   0   0.0 ( 0 )
 نشر من قبل Daniel A. Lidar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a numerical study of a quantum phase transition from a spin-polarized to a topologically ordered phase in a system of spin-1/2 particles on a torus. We demonstrate that this non-symmetry-breaking topological quantum phase transition (TOQPT) is of second order. The transition is analyzed via the ground state energy and fidelity, block entanglement, Wilson loops, and the recently proposed topological entropy. Only the topological entropy distinguishes the TOQPT from a standard QPT, and remarkably, does so already for small system sizes. Thus the topological entropy serves as a proper order parameter. We demonstrate that our conclusions are robust under the addition of random perturbations, not only in the topological phase, but also in the spin polarized phase and even at the critical point.



قيم البحث

اقرأ أيضاً

427 - Jin Zhang 2021
We study the fidelity and the entanglement entropy for the ground states of quantum systems that have infinite-order quantum phase transitions. In particular, we consider the quantum O(2) model with a spin-$S$ truncation, where there is an infinite-o rder Gaussian (IOG) transition for $S = 1$ and there are Berezinskii-Kosterlitz-Thouless (BKT) transitions for $S ge 2$. We show that the height of the peak in the fidelity susceptibility ($chi_F$) converges to a finite thermodynamic value as a power law of $1/L$ for the IOG transition and as $1/ln(L)$ for BKT transitions. The peak position of $chi_F$ resides inside the gapped phase for both the IOG transition and BKT transitions. On the other hand, the derivative of the block entanglement entropy with respect to the coupling constant ($S^{prime}_{vN}$) has a peak height that diverges as $ln^{2}(L)$ [$ln^{3}(L)$] for $S = 1$ ($S ge 2$) and can be used to locate both kinds of transitions accurately. We include higher-order corrections for finite-size scalings and crosscheck the results with the value of the central charge $c = 1$. The crossing point of $chi_F$ between different system sizes is at the IOG point for $S = 1$ but is inside the gapped phase for $S ge 2$, while those of $S^{prime}_{vN}$ are at the phase-transition points for all $S$ truncations. Our work elaborates how to use the finite-size scaling of $chi_F$ or $S^{prime}_{vN}$ to detect infinite-order quantum phase transitions and discusses the efficiency and accuracy of the two methods.
95 - S. Panahiyan , W. Chen , 2020
The notion of fidelity susceptibility, introduced within the context of quantum metric tensor, has been an important quantity to characterize the criticality near quantum phase transitions. We demonstrate that for topological phase transitions in Dir ac models, provided the momentum space is treated as the manifold of the quantum metric, the fidelity susceptibility coincides with the curvature function whose integration gives the topological invariant. Thus the quantum criticality of the curvature function near a topological phase transition also describes the criticality of the fidelity susceptibility, and the correlation length extracted from the curvature function also gives a momentum scale over which the fidelity susceptibility decays. To map out the profile and criticality of the fidelity susceptibility, we turn to quantum walks that simulate one-dimensional class BDI and two-dimensional class D Dirac models, and demonstrate their accuracy in capturing the critical exponents and scaling laws near topological phase transitions.
We investigate the Loschmidt amplitude and dynamical quantum phase transitions in multiband one dimensional topological insulators. For this purpose we introduce a new solvable multiband model based on the Su-Schrieffer-Heeger model, generalized to u nit cells containing many atoms but with the same symmetry properties. Such models have a richer structure of dynamical quantum phase transitions than the simple two-band topological insulator models typically considered previously, with both quasiperiodic and aperiodic dynamical quantum phase transitions present. Moreover the aperiodic transitions can still occur for quenches within a single topological phase. We also investigate the boundary contributions from the presence of the topologically protected edge states of this model. Plateaus in the boundary return rate are related to the topology of the time evolving Hamiltonian, and hence to a dynamical bulk-boundary correspondence. We go on to consider the dynamics of the entanglement entropy generated after a quench, and its potential relation to the critical times of the dynamical quantum phase transitions. Finally, we investigate the fidelity susceptibility as an indicator of the topological phase transitions, and find a simple scaling law as a function of the number of bands of our multiband model which is found to be the same for both bulk and boundary fidelity susceptibilities.
52 - D.I. Tsomokos 2005
The topological phase factor induced on interfering electrons by external quantum electromagnetic fields has been studied. Two and three electron interference experiments inside distant cavities are considered and the influence of correlated photons on the phase factors is investigated. It is shown that the classical or quantum correlations of the irradiating photons are transferred to the topological phases. The effect is quantified in terms of Weyl functions for the density operators of the photons and illustrated with particular examples. The scheme employs the generalized phase factor as a mechanism for information transfer from the photons to the electric charges. In this sense, the scheme may be useful in the context of flying qubits (corresponding to the photons) and stationary qubits (electrons), and the conversion from one type to the other.
We show that the concept of topological order, introduced to describe ordered quantum systems which cannot be classified by broken symmetries, also applies to classical systems. Starting from a specific example, we show how to use pure state density matrices to construct corresponding thermally mixed ones that retain precisely half the original topological entropy, a result that we generalize to a whole class of quantum systems. Finally, we suggest that topological order and topological entropy may be useful in characterizing classical glassy systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا