ترغب بنشر مسار تعليمي؟ اضغط هنا

Fidelity susceptibility near topological phase transitions in quantum walks

96   0   0.0 ( 0 )
 نشر من قبل Shahram Panahiyan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The notion of fidelity susceptibility, introduced within the context of quantum metric tensor, has been an important quantity to characterize the criticality near quantum phase transitions. We demonstrate that for topological phase transitions in Dirac models, provided the momentum space is treated as the manifold of the quantum metric, the fidelity susceptibility coincides with the curvature function whose integration gives the topological invariant. Thus the quantum criticality of the curvature function near a topological phase transition also describes the criticality of the fidelity susceptibility, and the correlation length extracted from the curvature function also gives a momentum scale over which the fidelity susceptibility decays. To map out the profile and criticality of the fidelity susceptibility, we turn to quantum walks that simulate one-dimensional class BDI and two-dimensional class D Dirac models, and demonstrate their accuracy in capturing the critical exponents and scaling laws near topological phase transitions.



قيم البحث

اقرأ أيضاً

304 - Shi-Jian Gu , Hai-Qing Lin 2009
We analyze ground-state behaviors of fidelity susceptibility (FS) and show that the FS has its own distinct dimension instead of real systems dimension in general quantum phases. The scaling relation of the FS in quantum phase transitions (QPTs) is t hen established on more general grounds. Depending on whether the FSs dimensions of two neighboring quantum phases are the same or not, we are able to classify QPTs into two distinct types. For the latter type, the change in the FSs dimension is a characteristic that separates two phases. As a non-trivial application to the Kitaev honeycomb model, we find that the FS is proportional to $L^2ln L$ in the gapless phase, while $L^2$ in the gapped phase. Therefore, the extra dimension of $ln L$ can be used as a characteristic of the gapless phase.
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal p hase transitions (based on the type of non-analiticity of free energy), and we find that usual fidelity criteria for identifying critical points is more applicable to the case of $lambda$ transitions (divergent second derivatives of free energy). Our study also reveals limitations of the fidelity approach: sensitivity to high temperature thermal fluctuations that wash out information about the transition, and inability of fidelity to distinguish between crossovers and proper phase transitions. In spite of these limitations, however, we find that fidelity remains a good pre-criterion for testing thermal phase transitions, which we use to analyze the non-zero temperature phase diagram of the Lipkin-Meshkov-Glick model.
Motivated by recent development in quantum fidelity and fidelity susceptibility, we study relations among Lie algebra, fidelity susceptibility and quantum phase transition for a two-state system and the Lipkin-Meshkov-Glick model. We get the fidelity susceptibility for SU(2) and SU(1,1) algebraic structure models. From this relation, the validity of the fidelity susceptibility to signal for the quantum phase transition is also verified in these two systems. At the same time, we obtain the geometric phase in these two systems in the process of calculating the fidelity susceptibility. In addition, the new method of calculating fidelity susceptibility has been applied to explore the two-dimensional XXZ model and the Bose-Einstein condensate(BEC).
We investigate the Loschmidt amplitude and dynamical quantum phase transitions in multiband one dimensional topological insulators. For this purpose we introduce a new solvable multiband model based on the Su-Schrieffer-Heeger model, generalized to u nit cells containing many atoms but with the same symmetry properties. Such models have a richer structure of dynamical quantum phase transitions than the simple two-band topological insulator models typically considered previously, with both quasiperiodic and aperiodic dynamical quantum phase transitions present. Moreover the aperiodic transitions can still occur for quenches within a single topological phase. We also investigate the boundary contributions from the presence of the topologically protected edge states of this model. Plateaus in the boundary return rate are related to the topology of the time evolving Hamiltonian, and hence to a dynamical bulk-boundary correspondence. We go on to consider the dynamics of the entanglement entropy generated after a quench, and its potential relation to the critical times of the dynamical quantum phase transitions. Finally, we investigate the fidelity susceptibility as an indicator of the topological phase transitions, and find a simple scaling law as a function of the number of bands of our multiband model which is found to be the same for both bulk and boundary fidelity susceptibilities.
The extension of the notion of quantum fidelity from the state-space level to the operator one can be used to study environment-induced decoherence. state-dependent operator fidelity sucepti- bility (OFS), the leading order term for slightly differen t operator parameters, is shown to have a nontrivial behavior when the environment is at critical points. Two different contributions to OFS are identified which have distinct physical origins and temporal dependence. Exact results for the finite-temperature decoherence caused by a bath described by the Ising model in transverse field are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا