ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributions of Roots of Reduced Cubic Equations with Random Coefficients

129   0   0.0 ( 0 )
 نشر من قبل Kerry Soileau
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Kerry M. Soileau




اسأل ChatGPT حول البحث

If the coefficients of polynomials are selected by some random process, the zeros of the resulting polynomials are in some sense random. In this paper the author rephrases the above in more precise language, and calculates the joint conditional densities of a random vector whose values determine almost surely the zeros of a random reduced cubic.

قيم البحث

اقرأ أيضاً

We consider random polynomials whose coefficients are independent and uniform on {-1,1}. We prove that the probability that such a polynomial of degree n has a double root is o(n^{-2}) when n+1 is not divisible by 4 and asymptotic to $frac{8sqrt{3}}{ pi n^2}$ otherwise. This result is a corollary of a more general theorem that we prove concerning random polynomials with independent, identically distributed coefficients having a distribution which is supported on { -1, 0, 1} and whose largest atom is strictly less than 1/sqrt{3}. In this general case, we prove that the probability of having a double root equals the probability that either -1, 0 or 1 are double roots up to an o(n^{-2}) factor and we find the asymptotics of the latter probability.
99 - Guohuan Zhao 2020
We prove the existence and uniqueness for SDEs with random and irregular coefficients through solving a backward stochastic Kolmogorov equation and using a modified Zvonkins type transformation.
It is well-known that for a one dimensional stochastic differential equation driven by Brownian noise, with coefficient functions satisfying the assumptions of the Yamada-Watanabe theorem cite{yamada1,yamada2} and the Feller test for explosions cite{ feller51,feller54}, there exists a unique stationary distribution with respect to the Markov semigroup of transition probabilities. We consider systems on a restricted domain $D$ of the phase space $mathbb{R}$ and study the rate of convergence to the stationary distribution. Using a geometrical approach that uses the so called {it free energy function} on the density function space, we prove that the density functions, which are solutions of the Fokker-Planck equation, converge to the stationary density function exponentially under the Kullback-Leibler {divergence}, thus also in the total variation norm. The results show that there is a relation between the Bakry-Emery curvature dimension condition and the dissipativity condition of the transformed system under the Fisher-Lamperti transformation. Several applications are discussed, including the Cox-Ingersoll-Ross model and the Ait-Sahalia model in finance and the Wright-Fisher model in population genetics.
86 - Sahani Pathiraja 2020
The aim of this paper is to obtain convergence in mean in the uniform topology of piecewise linear approximations of Stochastic Differential Equations (SDEs) with $C^1$ drift and $C^2$ diffusion coefficients with uniformly bounded derivatives. Conver gence analyses for such Wong-Zakai approximations most often assume that the coefficients of the SDE are uniformly bounded. Almost sure convergence in the unbounded case can be obtained using now standard rough path techniques, although $L^q$ convergence appears yet to be established and is of importance for several applications involving Monte-Carlo approximations. We consider $L^2$ convergence in the unbounded case using a combination of traditional stochastic analysis and rough path techniques. We expect our proof technique extend to more general piecewise smooth approximations.
208 - Marina Kleptsyna 2016
We consider Cauchy problem for a divergence form second order parabolic operator with rapidly oscillating coefficients that are periodic in spatial variables and random stationary ergodic in time. As was proved in [24] and [12] in this case the homog enized operator is deterministic. The paper focuses on non-diffusive scaling, when the oscillation in spatial variables is faster than that in temporal variable. Our goal is to study the asymptotic behaviour of the normalized difference between solutions of the original and the homogenized problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا