ترغب بنشر مسار تعليمي؟ اضغط هنا

L2 convergence of smooth approximations of Stochastic Differential Equations with unbounded coefficients

87   0   0.0 ( 0 )
 نشر من قبل Sahani Pathiraja Dr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Sahani Pathiraja




اسأل ChatGPT حول البحث

The aim of this paper is to obtain convergence in mean in the uniform topology of piecewise linear approximations of Stochastic Differential Equations (SDEs) with $C^1$ drift and $C^2$ diffusion coefficients with uniformly bounded derivatives. Convergence analyses for such Wong-Zakai approximations most often assume that the coefficients of the SDE are uniformly bounded. Almost sure convergence in the unbounded case can be obtained using now standard rough path techniques, although $L^q$ convergence appears yet to be established and is of importance for several applications involving Monte-Carlo approximations. We consider $L^2$ convergence in the unbounded case using a combination of traditional stochastic analysis and rough path techniques. We expect our proof technique extend to more general piecewise smooth approximations.



قيم البحث

اقرأ أيضاً

In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate of convergence in a suitable $L^1$-norm and we implement the scheme numerically. To the best of our knowledge this is the first paper to study (and implement) numerical solutions of SDEs whose drift lives in a space of distributions. As a byproduct we also obtain an estimate of the convergence rate for a numerical scheme applied to SDEs with drift in $L^p$-spaces with $pin(1,infty)$.
It is well-known that for a one dimensional stochastic differential equation driven by Brownian noise, with coefficient functions satisfying the assumptions of the Yamada-Watanabe theorem cite{yamada1,yamada2} and the Feller test for explosions cite{ feller51,feller54}, there exists a unique stationary distribution with respect to the Markov semigroup of transition probabilities. We consider systems on a restricted domain $D$ of the phase space $mathbb{R}$ and study the rate of convergence to the stationary distribution. Using a geometrical approach that uses the so called {it free energy function} on the density function space, we prove that the density functions, which are solutions of the Fokker-Planck equation, converge to the stationary density function exponentially under the Kullback-Leibler {divergence}, thus also in the total variation norm. The results show that there is a relation between the Bakry-Emery curvature dimension condition and the dissipativity condition of the transformed system under the Fisher-Lamperti transformation. Several applications are discussed, including the Cox-Ingersoll-Ross model and the Ait-Sahalia model in finance and the Wright-Fisher model in population genetics.
In this paper, we propose a monotone approximation scheme for a class of fully nonlinear partial integro-differential equations (PIDEs) which characterize the nonlinear $alpha$-stable L{e}vy processes under sublinear expectation space with $alpha in( 1,2)$. Two main results are obtained: (i) the error bounds for the monotone approximation scheme of nonlinear PIDEs, and (ii) the convergence rates of a generalized central limit theorem of Bayraktar-Munk for $alpha$-stable random variables under sublinear expectation. Our proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.
Partial differential equations (PDEs) fitting scientific data can represent physical laws with explainable mechanisms for various mathematically-oriented subjects. Most natural dynamics are expressed by PDEs with varying coefficients (PDEs-VC), which highlights the importance of PDE discovery. Previous algorithms can discover some simple instances of PDEs-VC but fail in the discovery of PDEs with coefficients of higher complexity, as a result of coefficient estimation inaccuracy. In this paper, we propose KO-PDE, a kernel optimized regression method that incorporates the kernel density estimation of adjacent coefficients to reduce the coefficient estimation error. KO-PDE can discover PDEs-VC on which previous baselines fail and is more robust against inevitable noise in data. In experiments, the PDEs-VC of seven challenging spatiotemporal scientific datasets in fluid dynamics are all discovered by KO-PDE, while the three baselines render false results in most cases. With state-of-the-art performance, KO-PDE sheds light on the automatic description of natural phenomenons using discovered PDEs in the real world.
111 - Shuo Huang , Gechun Liang 2019
We propose a monotone approximation scheme for a class of fully nonlinear PDEs called G-equations. Such equations arise often in the characterization of G-distributed random variables in a sublinear expectation space. The proposed scheme is construct ed recursively based on a piecewise constant approximation of the viscosity solution to the G-equation. We establish the convergence of the scheme and determine the convergence rate with an explicit error bound, using the comparison principles for both the scheme and the equation together with a mollification procedure. The first application is obtaining the convergence rate of Pengs robust central limit theorem with an explicit bound of Berry-Esseen type. The second application is an approximation scheme with its convergence rate for the Black-Scholes-Barenblatt equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا