ﻻ يوجد ملخص باللغة العربية
We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree $ell$. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed $kappa$ pulsation mechanism as well as alternative theories.
We continue our programme of extended single-site observations of pulsting subdwarf B (sdB) stars and present the results of extensive time series photometry to resolve the pulsation spectra for use in asteroseismological analyses. PG 0154+182, HS 18
We report the discovery of four new pulsating subdwarf B (sdBV) stars from Campaign 7 of the Kepler spacecrafts K2 mission. EPICs 215776487, 217280630, 218366972, and 218717602 are all gravity (g)-mode pulsators and we also detect two pressure (p)-mo
During the course of an ongoing CCD monitoring program to investigate low-level light variations in subdwarf B (sdB) stars, we have serendipitously discovered a new class of low amplitude, multimode sdB pulsators with periods of the order of an hour.
We present the discovery of nonradial pulsations in five hot subdwarf B (sdB) stars based on 27 days of nearly continuous time-series photometry using the Kepler spacecraft. We find that every sdB star cooler than $approx 27,500,$K that Kepler has ob
HS Hydrae is a short period eclipsing binary (P_orb=1.57 day) that belongs to a rare group of systems observed to have rapidly changing inclinations. This evolution is due to a third star on an intermediate orbit, and results in significant differenc