ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rise and Fall of the Eclipsing Binary HS Hydrae

99   0   0.0 ( 0 )
 نشر من قبل James RA Davenport
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HS Hydrae is a short period eclipsing binary (P_orb=1.57 day) that belongs to a rare group of systems observed to have rapidly changing inclinations. This evolution is due to a third star on an intermediate orbit, and results in significant differences in eclipse depths and timings year-to-year. Zasche & Paschke (2012) revealed that HS Hydraes eclipses were rapidly fading from view, predicting they would cease around 2022. Using 25 days of photometric data from Sector 009 of the Transiting Exoplanet Survey Satellite (TESS), we find that the primary eclipses for HS Hydrae were only 0.00173+/-0.00007 mag in depth in March 2019. This data from TESS likely represents the last eclipses detected from HS Hydrae. We also searched the Digitization of the Harvard Astronomical Plate Collection (DASCH) archive for historic data from the system. With a total baseline of over 125 years, this unique combination of data sets - from photographic plates to precision space-based photometry - allows us to trace the emergence and decay of eclipses from HS Hydrae, and further constrain its evolution. Recent TESS observations from Sector 035 confirm that eclipses have ceased for HS Hya, and we estimate they will begin again in 2195.

قيم البحث

اقرأ أيضاً

We present infrared spectroscopy of the classical nova V339 Delphini, obtained over a $sim2$ year period. The infrared emission lines were initially symmetrical, with HWHM velocities of 525 km s$^{-1}$. In later ($tgtrsim77$days, where $t$ is the tim e from outburst) spectra however, the lines displayed a distinct asymmetry, with a much stronger blue wing, possibly due to obscuration of the receding component by dust. Dust formation commenced at $sim$ day 34.75 at a condensation temperature of $1480pm20$K, consistent with graphitic carbon. Thereafter the dust temperature declined with time as $T_{rm d}propto{t}^{-0.346}$, also consistent with graphitic carbon. The mass of dust initally rose, as a result of an increase in grain size and/or number, peaked at $sim$ day 100, and then declined precipitously. This decline was most likely caused by grain shattering due to electrostatic stress after the dust was exposed to X-radiation. An Appendix summarises Planck Means for carbon, and the determination of grain mass and radius for a carbon dust shell.
Spitzers final Infrared Array Camera (IRAC) observations of SN 1987A show the 3.6 and 4.5 $mu$m emission from the equatorial ring (ER) continues a period of steady decline. Deconvolution of the images reveals that the emission is dominated by the rin g, not the ejecta, and is brightest on the west side. Decomposition of the marginally resolved emission also confirms this, and shows that the west side of the ER has been brightening relative to the other portions of the ER. The infrared (IR) morphological changes resemble those seen in both the soft X-ray emission and the optical emission. The integrated ER light curves at 3.6 and 4.5 $mu$m are more similar to the optical light curves than the soft X-ray light curve, though differences would be expected if dust is responsible for this emission and its destruction is rapid. Future observations with the James Webb Space Telescope will continue to monitor the ER evolution, and will reveal the true spectrum and nature of the material responsible for the broadband emission at 3.6 and 4.5 $mu$m. The present observations also serendipitously reveal a nearby variable source, subsequently identified as a Be star, that has gone through a multi-year outburst during the course of these observations.
We carried out deep searches for CO line emission in the outer disk of M33, at R>7 kpc, and examined the dynamical conditions that can explain variations in the mass distribution of the molecular cloud throughout the disk of M33. We used the IRAM-30~ m telescope to search for CO lines in the outer disk toward 12 faint mid-infrared (MIR) selected sources and in an area of the southern outer disk hosting MA1, a bright HII region. We detect narrow CO lines at the location of two MIR sources at galactocentric distances of about 8 kpc that are associated with low-mass young stellar clusters, and at four locations in the proximity of MA1. The paucity of CO lines at the location of weak MIR-selected sources probably arises because most of them are not star-forming sites in M33, but background sources. Although very uncertain, the total molecular mass of the detected clouds around MA1 is lower than expected given the stellar mass of the cluster, because dispersal of the molecular gas is taking place as the HII region expands. The mean mass of the giant molecular clouds (GMCs) in M33 decreases radially by a factor 2 from the center out to 4 kpc, then it stays constant until it drops at R>7 kpc. We suggest that GMCs become more massive toward the center because of the fast rotation of the disk, which drives mass growth by coalescence of smaller condensations as they cross the arms. The analysis of both HI and CO spectral data gives the consistent result that corotation of the two main arms in this galaxy is at a radius of 4.7+-0.3 kpc, and spiral shock waves become subsonic beyond 3.9 kpc. Perturbations are quenched beyond 6.5 kpc, where CO lines have been detected only around sporadic condensations associated with UV and MIR emission.
The intermediate polar FO Aquarii (FO Aqr) experienced its first-reported low-accretion states in 2016, 2017, and 2018, and using newly available photographic plates, we identify pre-discovery low states in 1965, 1966, and 1974. The primary focus of our analysis, however, is an extensive set of time-series photometry obtained between 2002 and 2018, with particularly intensive coverage of the 2016-2018 low states. After computing an updated spin ephemeris for the white dwarf (WD), we show that its spin period began to increase in 2014 after having spent 27 years decreasing; no other intermediate polar has experienced a sign change of its period derivative, but FO Aqr has now done so twice. Our central finding is that the recent low states all occurred shortly after the WD began to spin down, even though no low states were reported in the preceding quarter-century, when it was spinning up. Additionally, the systems mode of accretion is extremely sensitive to the mass-transfer rate, with accretion being almost exclusively disk-fed when FO Aqr is brighter than V~14 and substantially stream-fed when it is not. Even in the low states, a grazing eclipse remains detectable, confirming the presence of a disk-like structure (but not necessarily a Keplerian accretion disk). We relate these various observations to theoretical predictions that during the low state, the systems accretion disk dissipates into a non-Keplerian ring of diamagnetic blobs. Finally, a new XMM-Newton observation from a high state in 2017 reveals an anomalously soft X-ray spectrum and diminished X-ray luminosity compared to pre-2016 observations.
300 - Sadman Ali 2018
We have analysed the strength of the UV upturn in red sequence galaxies with luminosities reaching to below the $L^*$ point within four clusters at $z$ = 0.3, 0.55 & 0.7. We find that the incidence and strength of the upturn remains constant up to $z =0.55$. In comparison, the prevalence and strength of the UV upturn is significantly diminished in the $z=0.7$ cluster, implying that the stellar population responsible for the upturn in a typical red sequence galaxy is only just developing at this redshift and is essentially fully-developed by $sim 1$ Gyr later. Of all the mainstream models that seek to explain the UV upturn phenomenon, it is those that generate the upturn through the presence of a Helium-enhanced stellar subpopulation on the (hot) horizontal branch that are most consistent with this behaviour. The epoch ($z=0.7$) where the stars responsible for the upturn first evolve from the red giant branch places constraints on their age and chemical abundances. By comparing our results with the prediction made by the YEPS Helium-enhanced spectrophotometic models, we find that a solar metallicity sub-population that displays a consistent upturn between $0<z<0.55$ but then fades by $z=0.7$ would require a Helium abundance of $Ygeqslant0.45$, if formed at $z_fsim4$. Later formation redshifts and/or higher metallicity would further increase the Helium enhancement required to produce the observed upturn in these clusters and vice versa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا