ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolving the pulsations of subdwarf B stars: PG 0154+182, HS 1824+5745, and HS 2151+0857

55   0   0.0 ( 0 )
 نشر من قبل M. D. Reed
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue our programme of extended single-site observations of pulsting subdwarf B (sdB) stars and present the results of extensive time series photometry to resolve the pulsation spectra for use in asteroseismological analyses. PG 0154+182, HS 1824+5745, and HS 2151+0857 were observed at the MDM Observatory during 2004 and 2005. Our observations are sufficient to resolve the pulsations of all three target stars. We extend the number of known frequencies for PG 0154+182 from one to six, confirm that HS 1824+5745 is a mono-periodic pulsator, and extend the number of known frequencies to five for HS 2151+0857. We perform standard tests to search for multiplet structure, measure amplitude variations as pertains to stochastic excitation, and examine the mode density to constrain the mode degree l.

قيم البحث

اقرأ أيضاً

We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We ex tend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree $ell$. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed $kappa$ pulsation mechanism as well as alternative theories.
399 - P. Rodriguez-Gil 2004
We report the discovery of a new, non-eclipsing SU UMa-type dwarf nova, HS 2219+1824. Photometry obtained in quiescence (V ~ 17.5) reveals a double-humped light curve from which we derive an orbital period of ~ 86.2 min. Additional photometry obtaine d during a superoutburst reaching V ~ 12.0 clearly shows superhumps with a period of ~ 89.05 min. The optical spectrum contains double-peaked Balmer and HeI emission lines from the accretion disc as well as broad absorption troughs of Hbeta, Hgamma, and Hdelta from the white dwarf primary star. Modelling of the optical spectrum implies a white dwarf temperature of 13000 K <~ Twd <~ 17000 K, a distance of 180 pc <~ d <~ 230 pc, and suggests that the spectral type of the donor star is later than M5. Phase-resolved spectroscopy obtained during quiescence reveals a narrow Halpha emission line component which has a radial velocity amplitude and phase consistent with an origin on the secondary star, possibly on the irradiated hemisphere facing the white dwarf. This constitutes the first detection of line emission from the secondary star in a quiescent SU UMa star.
56 - U. Heber 2002
The origin of subluminous B stars is still an unsolved problem in stellar evolution. Single star as well as close binary evolution scenarios have been invoked but until now have met with little success. We have carried out a small survey of spectrosc opic binary candidates (19 systems consisting of an sdB star and late type companion) with the Planetary Camera of the WFPC2 onboard Hubble Space Telescope to test these scenarios. Monte Carlo simulations indicate that by imaging the programme stars in the R-band about one third of the sample (6-7 stars) should be resolved at a limiting angular resolution of 0.1 if they have linear separations like main sequence stars (single star evolution). None should be resolvable if all systems were produced by close binary evolution. In addition we expect three triple systems to be present in our sample. Most of these, if not all, should be resolvable. Components were resolved in 6 systems with separations between 0.2 and 4.5. However, only in two systems do the magnitudes of the resolved components match the expectations from the deconvolution of the spectral energy distribution. These two stars could be physical binaries whereas in the other cases the nearby star may be a chance projection or a third component. Radial velocity measurements indicate that the resolved system TON 139 is a triple system, with the sdB having a close companion that does not contribute detectably to the integrated light of the system. Accordingly the success rate would be only 5% which is clearly below the prediction for single star evolution. We conclude that the distribution of separations of sdB binaries deviates strongly from that of normal stars. Our results add further evidence that close binary evolution is fundamental for the evolution of sdB stars. (abbreviated)
We present follow-up observations of pulsating subdwarf B (sdB) stars as part of our efforts to resolve the pulsation spectra for use in asteroseismological analyses. This paper reports on multisite campaigns of the pulsating sdB stars PG 1618+563B a nd PG 0048+091. Data were obtained from observatories placed around the globe for coverage from all longitudes. For PG 1618+563B, our five-site campaign uncovered a dichotomy of pulsation states: Early during the campaign the amplitudes and phases (and perhaps frequencies) were quite variable while data obtained late in the campaign were able to fully resolve five stable pulsation frequencies. For PG 0048+091, our five-site campaign uncovered a plethora of frequencies with short pulsation lifetimes. We find them to have observed properties consistent with stochastically excited oscillations, an unexpected result for subdwarf B stars. We discuss our findings and their impact on subdwarf B asteroseismology.
Tidally locked rotation is a frequently applied assumption that helps to measure masses of invisible compact companions in close binaries. The calculations of synchronization times are affected by large uncertainties in particular for stars with radi ative envelopes calling for observational constraints. We aim at verifying tidally locked rotation for the binary PG 0101+039, a subdwarf B star + white dwarf binary from its tiny (0.025 %) light variations measured with the MOST satellite (Randall et al. 2005). Binary parameters were derived from the mass function, apparent rotation and surface gravity of PG 0101+039 assuming a canonical mass of 0.47 Mo and tidally locked rotation. The light curve was then synthesised and was found to match the observed amplitude well. We verified that the light variations are due to ellipsoidal deformation and that tidal synchronization is established for PG 0101+039. We conclude that this assumption should hold for all sdB binaries with orbital periods of less than half a day. Hence the masses can be derived from systems too faint to measure tiny light variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا