ترغب بنشر مسار تعليمي؟ اضغط هنا

Inflation, bifurcations of nonlinear curvature Lagrangians and dark energy

44   0   0.0 ( 0 )
 نشر من قبل Franz Schunck
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A possible equivalence of scalar dark matter, the inflaton, and modified gravity is analyzed. After a conformal mapping, the dependence of the effective Lagrangian on the curvature is not only singular but also bifurcates into several almost Einsteinian spaces, distinguished only by a different effective gravitational strength and cosmological constant. A swallow tail catastrophe in the bifurcation set indicates the possibility for the coexistence of different Einsteinian domains in our Universe. This `triple unification may shed new light on the nature and large scale distribution not only of dark matter but also on `dark energy, regarded as an effective cosmological constant, and inflation.

قيم البحث

اقرأ أيضاً

79 - Hao-Hao Li , Gen Ye , Yong Cai 2019
We explore the bound of the trans-Planckian censorship conjecture on an inflation model with multiple stages. We show that if the first inflationary stage is responsible for the primordial perturbations in the cosmic microwave background window, the $e$-folding number of each subsequent stage will be bounded by the energy scale of the first stage. This seems to imply that the lifetime of the current era of accelerated expansion (regarded as one of the multiple inflationary stages) might be a probe for distinguishing inflation from its alternatives. We also present a multistage inflation model in a landscape consisting of anti-de Sitter vacua separated by potential barriers.
115 - Yeinzon Rodriguez 2017
We study the role that a cosmic triad in the generalized $SU(2)$ Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version $S_{mu u}$ of the gauge field strength tensor $F_{mu u}$, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the $S$ term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter $omega simeq -1$ and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the $S$ term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve $S_{mu u}$, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.
The interaction between two initially causally disconnected regions of the universe is studied using analogies of non-commutative quantum mechanics and deformation of Poisson manifolds. These causally disconnect regions are governed by two independen t Friedmann-Lema^{i}tre-Robertson-Walker (FLRW) metrics with scale factors $a$ and $b$ and cosmological constants $Lambda_a$ and $Lambda_b$, respectively. The causality is turned on by positing a non-trivial Poisson bracket $[ {cal P}_{alpha}, {cal P}_{beta} ] =epsilon_{alpha beta}frac{kappa}{G}$, where $G$ is Newtons gravitational constant and $kappa $ is a dimensionless parameter. The posited deformed Poisson bracket has an interpretation in terms of 3-cocycles, anomalies and Poissonian manifolds. The modified FLRW equations acquire an energy-momentum tensor from which we explicitly obtain the equation of state parameter. The modified FLRW equations are solved numerically and the solutions are inflationary or oscillating depending on the values of $kappa$. In this model the accelerating and decelerating regime may be periodic. The analysis of the equation of state clearly shows the presence of dark energy. By completeness, the perturbative solution for $kappa ll1 $ is also studied.
186 - Shinji Tsujikawa 2014
The effective field theory (EFT) of cosmological perturbations is a useful framework to deal with the low-energy degrees of freedom present for inflation and dark energy. We review the EFT for modified gravitational theories by starting from the most general action in unitary gauge that involves the lapse function and the three-dimensional geometric scalar quantities appearing in the Arnowitt-Deser-Misner (ADM) formalism. Expanding the action up to quadratic order in the perturbations and imposing conditions for the elimination of spatial derivatives higher than second order, we obtain the Lagrangian of curvature perturbations and gravitational waves with a single scalar degree of freedom. The resulting second-order Lagrangian is exploited for computing the scalar and tensor power spectra generated during inflation. We also show that the most general scalar-tensor theory with second-order equations of motion-Horndeski theory-belongs to the action of our general EFT framework and that the background equations of motion in Horndeski theory can be conveniently expressed in terms of three EFT parameters. Finally we study the equations of matter density perturbations and the effective gravitational coupling for dark energy models based on Horndeski theory, to confront the models with the observations of large-scale structures and weak lensing.
In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single field slow-r oll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted towards the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا