ﻻ يوجد ملخص باللغة العربية
In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted towards the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating.
After giving a pedagogical review we clarify that the stochastic approach to inflation is generically reliable only at zeroth order in the (geometrical) slow-roll parameter $epsilon_1$ if and only if $epsilon_2^2ll 6/epsilon_1$, with the notable exce
Slow-roll inflation is analyzed in the context of modified gravity within the Palatini formalism. As shown in the literature, inflation in this framework requires the presence of non-traceless matter, otherwise it does not occur just as a consequence
The primordial power spectra of scalar and tensor perturbations during slow-roll inflation are usually calculated with the method of Bessel function approximation. For constant-roll or ultra slow-roll inflation, the method of Bessel function approxim
We study slow-roll inflation with a Gauss-Bonnet term that is coupled to an inflaton field nonminimally. We investigate the inflationary solutions for a specific type of the nonminimal coupling to the Gauss-Bonnet term and inflaton potential both ana
We discuss the constant-roll inflation with constant $epsilon_2$ and constant $bareta$. By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, an