ﻻ يوجد ملخص باللغة العربية
We study the role that a cosmic triad in the generalized $SU(2)$ Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version $S_{mu u}$ of the gauge field strength tensor $F_{mu u}$, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the $S$ term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter $omega simeq -1$ and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the $S$ term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve $S_{mu u}$, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.
We explore the bound of the trans-Planckian censorship conjecture on an inflation model with multiple stages. We show that if the first inflationary stage is responsible for the primordial perturbations in the cosmic microwave background window, the
The interaction between two initially causally disconnected regions of the universe is studied using analogies of non-commutative quantum mechanics and deformation of Poisson manifolds. These causally disconnect regions are governed by two independen
Non-canonical scalar fields with the Lagrangian ${cal L} = X^alpha - V(phi)$, possess the attractive property that the speed of sound, $c_s^{2} = (2,alpha - 1)^{-1}$, can be exceedingly small for large values of $alpha$. This allows a non-canonical f
The effective field theory (EFT) of cosmological perturbations is a useful framework to deal with the low-energy degrees of freedom present for inflation and dark energy. We review the EFT for modified gravitational theories by starting from the most
We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational resu