ﻻ يوجد ملخص باللغة العربية
A spin-1 condensate with antiferromagnetic interactions supports nematic spin vortices in the easy-plane polar phase. These vortices have a $2pi$ winding of the nematic director, with a core structure that depends on the quadratic Zeeman energy. We characterize the properties of the nematic spin vortex in a uniform quasi-two-dimensional system. We also obtain the vortex excitation spectrum and use it to quantify its stability against dissociating into two half-quantum vortices, finding a parameter regime where the nematic spin vortex is dynamically stable. These results are supported by full dynamical simulations.
We find a novel topological defect in a spin-nematic superfluid theoretically. A quantized vortex spontaneously breaks its axisymmetry, leading to an elliptic vortex in nematic-spin Bose-Einstein condensates with small positive quadratic Zeeman effec
We propose a generalized Mathieu equation (GME) which describes well the dynamics for two different models in spin-1 Bose-Einstein condensates. The stability chart of this GME differs significantly from that of Mathieus equation and the unstable dyna
One of the excitements generated by the cold atom systems is the possibility to realize, and explore, varied topological phases stemming from multi-component nature of the condensate. Popular examples are the antiferromagnetic (AFM) and the ferromagn
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induce